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The equilibrium thermodynamics of a one-dim~nsional system of bosons with repulsive delta-function 
interaction is shown to be derivable from the solution of a simple integral equation. The excitation 
spectrum at any temperature T is also found. 

I. INTRODUCTION 

The ground-state energy of a system of N bosons 
with repulsive delta-function interaction in one di­
mension with periodic boundary condition was calcu­
lated by Lieb and Liniger.I The Hamiltonian for the 
system is 

N a2 
H = - L -2 + 2c I b(Xi - Xi)' C > 0, (1) 

1 aX i i>i 

and the periodic box has length L. Using Bethe's 
hypothesis2 they showed that the k's in the hypothesis 
satisfy 

(_l)N-I exp (-ikL) = exp [i~O(k' - k)} (2) 

where 

O(k) = -2 tan-I (k/c), -7T < 0 < 7T. (3) 

Taking the logarithm of (2) is a somewhat subtle 
process. In this paper we shall first discuss this point 
and show that all states of (I) are given by Bethe's 
hypothesis with real k's. The main purpose of the 
paper is to then evaluate the thermodynamical 
properties of the system at a finite temperature T. 

While we try to maintain mathematical rigor in the 
rest of the paper, it is to be emphasized that Sees. III 
and IV are far from rigorous. 

U. PROOF OF BETHE'S HYPOTHESIS 
FOR ALL STATES 

We first take the logarithm of (2): 

where 

kL = 27Tlk + IO(k - k'), 
k' 

Ik = integer, if N = odd, 

Ik + t = integer, if N = even. 

* Partially supported by NSF Grant GP873 I. 
1 E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). 
2 H. A. Bethe, Z. Physik 71, 205 (1931). 

(4) 

(5) 

Now, for any set ofreal 1's, 11> 12 , ••• ,IN' Eq. (4) 
has a unique real solution for the k's, kI' k2' ... , kN • 

The proof of this statement (similar to but simpler 
than the proof of a corresponding statement3 for the 
Heisenberg-Ising problem) follows. Let 

OI(k) = J: O(k) dk. 

Define 
N N 

B(kl>' .. , kN) = tL I k; - 27T I Tiki 
1 1 

- t I 0I(k i - ks )· (6) 
i,S 

Equation (4) is the condition for the extrema of B. 
Now the second-derivative matrix B2 of B is positive­
definite. [The first sum in (6) contributes a positive­
definite part to B2 • The second sum contributes 
nothing. Each term in the third sum is negative­
semidefinite, since O~(k) = O'(k) < 0.] Furthermore 
for large values of I k 2

, B --+ tL(I k 2
). Thus, B has 

one and only one extremum, namely, a minimum. 
It is further clear from this argument that the 

solution above represents a point S in k space which 
moves continuously as c i is changed. [In fact, 
dki/d(c-1) can be computed.] Now when c-l = 0, 
01 = ° and the minimum of B occurs at 

(7) 

Now the problem with c- l = 0 is the problem of 
free particles with the condition that 'IjJ = ° whenever 
Xi = Xi (any i :F j). All eigenfunctions of H for this 
problem are easily seen to be the same as that of free 
fermions in the segment 0 ::::;; Xl ::::;; X 2 ::::;; X3 ::::;; ••• ::::;; 

XN ::::;; L. Thus, when c-I = 0, all eigenfunctions are 
of Bethe's form, with the k's given by (7) and with all 
the 1's different. 

• C. N. Yang and C. P. Yang, Phys. Rev. 150, 321 (1966). 
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Bya continuity argument with respect to c-1 we ob­
tain the following: 

Theorem: For any set of I's satisfying (5), no two 
of which are identical, there is a unique set of real 
k's satisfying (4), with no two k's being identical. 
With this set of k's, one eigenfunction of H, of Bethe's 
form, can be constructed. The totality of such eigen­
functions form a complete set for the boson system. 

The numbers I are quantum numbers for the problem. 

III. ENERGY AND ENTROPY FOR A SYSTEM 
WITH N = ro 

We now consider the problem for N = 00 and L = 
00 at a fixed density D = N/L. For the ground state, 
the quantum numbers I/L form1 a uniform lattice 
between - D/2 and D/2. The k's then form1 a non­
uniform distribution between a maximum k and a 
minimum k. For an excited state, (5) shows that the 
quantum numbers I/L are still on the same lattice, 
but not all lattice sites are taken, and the limits 
- D/2 and D/2 are no longer respected. We shall call 
the omitted lattice sites J;/ L. We would want to define 
corresponding "omitted k values" to be called holes. 
This can be easily done: Given the /'s, Eq. (4) defines 
the set of k's as proved in the last section. Now, 

Lh(p) == pL - 2: ()(p - k') (8) 
k' 

is a continuous monotonic function of p. At P = ± 00, 

it is equal to ± 00. Those values of p where Lh(p) = 
27TI are k's. Those values of p where Lh(p) = 27TJ 
will be defined as holes. 

For a large system, there is thus a density distribu­
tion of holes as well as one of k's: 

Lp(k) dk = No. of k's in dk, 

LPh(k) dk = No. of holes in dk. (9) 

By definition, the number of k's and holes in the 
interval dk is the number of times Lh(k) ranges over 
values 27TI and 27TJ in this interval. 

Thus, 

dh(k) = 27T(p + Ph) == 27Tj'(k). (lOa) 
dk 

Equation (8) gives 

h(k) = k - L:8(k - k')p(k') dk'. (lOb) 

Differentiation with respect to k gives 

27Tf= 27T(p + Ph) = 1 + 2e P . foo (k') dk 

-00 e2 + (k - k')2 

(11) 

The energy per particle for the state is 

E/N = D-1L:p(k)k2 dk, (12) 

where 

D = N/L = L: p(k) dk. (13) 

The entropy of the "state" is not zero since the 
existence of the omitted quantum numbers J; allows 
many wavefunctions of approximately the same 
energy to be described by the same P and Ph' In fact, 
for given P and Ph' the total number of k's and holes 
in dk is L(p + Ph) dk, of which Lp dk are k's and 
Lph dk are holes. Thus the number of possible choices 
of states in dk consistent with given P and Ph is 

[L(p + Ph) dk]! 

[Lp dk]! [Lph dk]! 

The logarithm of this gives the contribution to the 
entropy from dk. Thus, the total entropy is, putting 
the Boltzman constant equal to 1, 

S = '2 {(Lpdk + Lp"dk)ln(p + Ph) 

- Lp dk In P - Lph dk In Ph} 
or 

SIN = D-1L:[(p + ph)ln(p + Ph) 

- pIn P - Ph In Ph] dk. (14) 

IV. THERMAL EQUILIBRIUM 

At temperature T, we should maximize the contri­
bution to the partition function from the states 
described by P and Ph' In other words, given p, Ph 
is defined by (11). One then computes the contribution 
to the partition function 

exp (S - ET-l), (14') 

where Sand E are given by (14) and (12). The equi­
librium P is then obtained by maximizing this contri­
bution when P is varied subject to the condition (13). 

The above described procedure leads in a straight­
forward manner to the following condition on the 
equilibrium p: 

-A + e + Tin.£. 
Ph 

- Teloo dq In (1 + ..e.) = 0 
7T -00 e2 + (k - q)2 Ph' 

where A is a Lagrange multiplier for the condition (13). 
Writing 

(15) 
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we have 

2 TCi OO 

dq €(k) = -A + k - - 2 2 
7T -00 C + (k - q) 

x In {I + exp [-€(q)/T]}. (16) 

Equation (11) becomes 

27Tf(k) = 27Tp(k){1 + exp [€(k)/TJ) 

= 1 + 2cfoo p(q) dq . (17) 
-00 c2 + (k _ q)2 

It will be shown in Appendix A that (16) can be solved 
for € by iteration. Equation (17) is then a Fredholm 
equation for p. It will be shown in Appendix B that P 
can be obtained by iteration of (17). The energy, 
density D, and entropy can then be obtained from 
(12)-(14). 

In Appendix C it will be shown that the maximiza­
tion procedure that led to (16) can be more rigorously 
treated and that the conclusion of the next section can 
then be obtained without much algebra. 

V. A = CHEMICAL POTENTIAL 

We shall now show that A is the chemical potential. 
Multiply (16) with pD-l and integrate over k to obtain 

A = D-1L: p(k2 
- €) dk 

+ TD-1L:dq[(27T)-1 - f(q)] 

X In (1 + exp {-~q)}). (18) 

In this formula, the square bracket is obtained from 
(17). Now use (15) to rewrite (14) as 

SIN = D-1L: (p + Ph) In (1 + exp {-€/T}) dk 

+ (DT)-lL: P€ dk. (19) 

Thus, the free energy per particle is 

F N-1 = (E - TS)N- 1 = D-1L: (k2 
- €)p dk 

- T D-1L: (p + Ph) In [1 + exp (-€/T)] dk. 

(20) 

Comparison of (18) and (20) gives, using f = p + Ph' 

FN-1 = A - T(27TD)-lL:ln [1 + exp(-€/T)]dk. 

(21) 

If we now prove that the last term is - P D-l (where 
P is the pressure), then this formula demonstrates 
that A is the chemical potential, since by thermo-

dynamics 

F = -PL + N X (chemical potential). 

Now, by (21), 

P = -(~~)T 
_ N oA TN foo d 1 (_1) o€ oA 
- - oL + 27T D -00 q 1 + liT T oA oL 

+ ~ f 00 dk In (1 + e-fIT), 
27T -00 

(22) 

where € is considered a function of A defined by (16). 
Differentiating (16) with respect to A, we obtain 

l-_(O€)+.£fOO dq (o€/oA) 
- oA 7T -00 c2 + (k - q)2 1 + ef(q)IT . 

(23) 

Comparing this equation with (17) we conclude, 
by the uniqueness of the solution of (17) (see Ap­
pendix B), 

- o€ = 27Tf(k) = 27Tp(k)(1 + ef(k)IT). (24) 
oA 

The first two terms in the .:xpression (22) for P now 
cancel each other by (24) and (13). Thus, 

p = :£ foo dk In (1 + e-dk)IT). (25) 
27T -00 

This proves the assertion that A is the chemical 
potential. 

We shall prove in Appendix D that peA, T) is 
analytic in A and T. To recapitulate: € is defined by 
(16) once A and T are given. Equation (25), then, 
gives P as a function of A and T. The other thermo­
dynamical quantities are obtainable from the thermo­
dynamical relation 

dP = (S/L) dT + (N/L) dA. (26) 

If one wants to compute p, one uses either (17) or (24). 

VI. SPECIAL CASES 

A. c = 00 

The integrals in (16) and (17) do not contribute. 
Thus, 

€ = -A + k2
, 

27TP = z exp (-k 2/T)[1 + z exp (-k2/T)]-I, 

27TPh = [1 + z exp (-k2/T)]-I, (27) 

P = T(27T)-1.L: dk In [1 + z exp (-k 2/T)], 

where 

z = fugacity = exp (A/T). 
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These equations are those for a free Fermi gas, a 
result that is anticipated, as discussed in Sec. II. 

B. c = 0 
As c---+O, 

c(c2 + X 2)-1 ---+ m5(x). (28) 

Thus, (16) gives 

e = -A + k 2 - TIn [1 + exp (- EfT)] 
or 

exp (-efT) = [=-1 exp (k2/T) - 1]-1, 

where we have used the fugacity defined in (27). 
Equation (25) now becomes 

P = -T(27T)-lL: dk In [1 - z exp (-k2/T)]. (29) 

Equations (28) and (17) give 

27TPh=1, 

27Tp = exp (-e/T) = [=-1 exp (k2/T) - 1]-1. (30) 

Eq uations (29) and (30) are precisely the corresponding 
expressions for a free Bose gas, as they should be. 

C. T=O 

This is the case solved1 by Lieb and Liniger. 
It will be shown in Appendix A that e(k) is a 

monotonically increasing function of k 2
• At T = ° 

assume the function to have a zero at k 2 = q~ so that 

e(k) < 0, k2 < q~, 
e(k) > 0, k2 > qL 

e(qo) = 0. 

Equation (15) gives 

P = 0, for k2 > qL 

Ph = 0, for k2 < q~. 
Equations (16) and (17) become 

e(k) = -A + k 2 + £. (qo 2 e(q) dg 2' 

7T J-qO C + (k - q) 

(31) 

(32) 

(33) 

2 - 1 + 2CJ
q

o p(q) dq for k 2 < q2 7Tp- 2 2' o· 
-qo C + (k - q) 

(34) 

Equation (34) is the equation1 of Lieb and Liniger. 
Equation (33) will be useful in the next section. 

VII. EXCITATION 

Consider a state S, with 1's and k's satisfying 

kjL = 27TI j + ~ O(kj - kJ, (35) 
i 

and a state S', with primed I's and k's satisfying 

k;L = 27TI; + ~ O(kj - k;). (36) 
i 

We consider the case where 

I; = I j , except when j = r:t.. (37) 

[Notice that I~, I~, ... , IN may not be a monotonic­
ally increasing series, since I~ may be any integer for 
N = odd and any integer +t for N = even.] 

Subtract (35) from (36) to obtain 

We now assume that, for all j :;l: r:t., k j and k; are 
approximately the same. This is the same assumption 
as used by Lieb4 for the excitations near the ground 
state (i.e., T = 0). We write 

(k; - kj)L = X(k;), j:;l: r:t.. 

Thus, we expand those terms in (38) for which i :;l: r:t.: 

X(k j) = ~ O'(k j - kJ[X(k j ) - X(ki )]L-1 

i=1=tz. 

+ O(k j - k~) - O(k j - ka) (39) 
or 

X(k) = L: O'(k - q)[X(k) - X(q)]p(q) dq 

+ O(k - k~) - O(k - ka). (40) 

Now we differentiate (1Ob) and use it to evaluate the 
coefficient of X(k) in (40). Writing 

f(k)X(k) = g(k), 
we thus obtain 

27Tg(k) = - L: O'(k - q)g(q) 

or, explicitly, 

X [1 + exp { +e(q)/T} ]-1 dq 

+ O(k - k~) - O(k - ka) 

g(k) = ~ roo g(q) dq 
7T J-oo [c2 + (k - q)2][1 + exp e(q)/Tj 

(41) 

(42) 

1 1 (k' k) -lit -1 (k k)-l + - tan- a - C - - an a - C • 
7T 7T 

(43) 

This is a Fredholm integral equation which we shall 
write in operator form 

g = Kg + G. (44) 

The momentum difference and energy difference 

• E. Lieb. Phys. Rev. 130, 1616 (1963). 
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between the two states are 

/).K = t (k; - k j ) = k~ - ka + L:X(k)P(k) dk (45) 

and 

/).E = 2, (k~2 - k;) = k~2 - k; +foo X(k)2kp(k) dk. 
) -00 

(46) 

We shall prove in Appendix E the following: 

Theorem: The momentum difference and energy 
differences between the two states are 

/).K = h(k~) - h(ka ) (47) 
and 

/).E = Eo(k~) - Eo(ka), ( 48) 
where 

EO = E + A (49) 

and h is an odd function of k defined by (lOa). These 
equations are accurate to the order N°, not just Nl. 
(Notice that in evaluating the thermodynamical 
quantities, . such as the energy, we only maintain 
accuracy up to the order Nl.) 

VIII. DISCUSSIONS 

(A) It is easy to prove that, for a finite number of 
simultaneous excitations, 

a a 

a a 

Thus it is tempting to regard h(ka ) and Eo(ka ) as the 
momentum and energy of an elementary excitation. 

To be more precise, we consider a system of non­
interacting fermions with its single-particle states 
labeled by k. The momentum and energy of a single­
particle state k are taken to be h(k) and Eo(k), respec­
tively. The number of single-particle states in the k 
interval dk is f(k) dk. Such a system of particles will 
be called a model system M. At a fixed fugacity z, 
the model system has an average number of particles 
in the state k given by 

(52) 

so that the number of particles in the interval dk is 
f dk times (52), which is also the same quantity in the 
true system. The model system M and the true system 
then have the same excitation spectra at T, provided 

S In the limit T ->- 0, the energy and momentum spectra are 
reducible to very simple expressions, using (3IH34). These spectra 
have been obtained by Lieb in Ref. 4. Reduction to such simple 
equations as (33) is new. 

only a finite number of excitations are made from 
thermal equilibrium. (Notice that the definition of 
the system M depends on h, EO, andf) 

(B) The excitation ka -+ k~ discussed in Sec. VII 
occurs with an excitation function which is propor­
tional to a factor dependent on the method of excita­
tion. But, in addition, it is also proportional to the 
number of l's in the interval df near fa and the number 
of vacancies in the interval dI' near f~. Thus, to excite 

from (k in dk) to (k' in dk') 

there is an intrinsic excitation factor equal to 

P(k)Ph(k') dk dk' = p(k)p(k')edk')/T dk dk'. (53) 

APPENDIX A 

We want to prove that (16) can be solved by 
iteration. Define the right-hand side of (16) as OE. 

Define further 
El = -A + k 2 , 

E2 = OEl' (AI) 

Ea = OE2 , etc. 

It is easily seen that 

Next one can show that En(k) is bounded from below. 
To do this, one proves first by induction that En - k 2 

is a nondecreasing function of k2• One then has 

E (0) > -A _ TCfoo dq 
n+l - • + 2 

7T -00 C- q 

X In [1 + exp {-En(0)r1 
- q 2T- l

}]. 

(A2) 

Now define the right-hand side of (A2) as f[En(O)]. 
That is, 

f(x) = -A + x - TCfoo A In (exiT + e-Q'/T). 
7T -00 c- + q2 

(A3) 

It is clear from (A3) that f(x) - x is monotonically 
decreasing. It has one and only one zero. Call the 
zero xo so that 

The right-hand side of (A2) shows that 

f(x) is monotonically increasing 

and thatf(x) < -A. Thus (A4) gives 

-A > f(xo) = Xo' 

(A4) 

(A5) 

(A6) 
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Equations (A4), (A5), and (A6) show that 

El(O) = -A > xO , 

E2(O) ~f[El(O)] > f(xo) = xO , 

E3(0) ~ f[E2(O)] > f(xo) = xo, etc. 

Thus, 

Having shown that 

lim En(k) = EL(k) 
n-+oo 

(A7) 

exists, one can next prove that the limit EL(k) does 
indeed satisfy (16). The main point is to show succes­
sively that (i), for E > xo, 

~ln(1 + e-E1T) > - f, where 0 < C < 1, 
dE T 

and (ii) En --+ EL uniformly in k. 

APPENDIX B 

To show that (17) can be solved by iteration we 
construct the symmetrized kernel 

If tp is any normalized function and 

<I> = [1 + e'ITr~'tp, 
then 

-1 
+K' = <1>+ 7T C <I> 

tp tp e2 + (k _ q)2 

=:;; <1>+<1> =:;; [1 + e"'oIT]-ltp+tp, 

where Xo was defined in Appendix A. Thus, the eigen­
values of K' are less than unity and iteration of 
(17) converges. 

The solution of (17) so obtained evidently satisfies 

P > 0, Ph = P exp [E/T] > 0. (B2) 

APPENDIX C 

(A) We treat the maximization procedure leading 
to (16) and (17) more rigorously here, showing that 
the solution of (16) and (17) indeed leads to a mini­
mum of the free energy, i.e., a maximum of the 
partition function (14'). 

Consider any p(k). If p(k) ~ 0 and the Ph(k) 
defined by (11) is everywhere ~ 0, we say that P is in 
Ro. It is clear that if PI and P2 are both in Ro, then 
XPI + (1 - X)P2 for ° =:;; x =:;; 1 is also in Ro. Thus 
Ro is convex. 

We define X(L, T, A, p) by 

X = L L: k
2
p dk + LT L: [p In P + Ph In Ph 

- (p + Ph) In (p + Ph)] dk - LA L:p dk. (Cl) 

Consider P = Po + X PI where Po and PI are inde­
pendent of x. Assume P to be in Ro for a real segment 
of x. We can take the derivatives of X with respect 
to x in this segment. A straightforward calculation 
yields 

~~ = L J PI dk[ k
2 

- A - E(k) - T 

x J B(k, q) In (1 + e-E(q)IT) dq 1 (C2) 

where E is defined by 

exp(E/T) = p,,/p 
and 

7T-1C 
B(k, q) = 2 2 = B(q, k). 

C + (k - q) 

It is easy to show that 

_T-1 oE(k) = p-l[1 + e-E1T] 

ox 

(C3) 

(C4) 

X {PI - [1 + eE(k)IT]-IJB(k, q)PI(q) dq}. (C5) 

Now, 

d
2
X = LJP dk 

dx2 I 

x {- OE(k) +JB(k, q)(l + eE(q)IT)-1 OE(q) dq}. 
ox ox 

(C6) 

The double integral in (C6), after the switch k ~ q, 
can be reduced through the use of (C5), giving 

d
2 
X = T-1LJ [OE(k)]2p(k)[1 + e-E(k)IT]-1 dk > 0. 

dx2 ox 
(C7) 

By (B2), the solution of (16) and (17) gives a P in 
Ro. By (C2), at that p, dX/dx = 0. 

We conclude further, from (C7), that X has a 
unique minimum in Ro at the P given by (16) and (17). 

(B) For given L, T, and A, we denote the minimum 
of X discussed above by Y = Y(L, T, A). Clearly, 

oY = -LJpdk =-N oA ' 
oY =-s 
aT ' 
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by (13) and (14). Further, since Y is proportional to L, 

dY= -NdA - SdT+ (Y/L)dL. 
Thus, 

dey + NA) = -S dT + (Y/L) dL + A dN. 

But Y + NA is the free energy. Thus, 

A = chemical potential 
and 

Y/L = -pressure. 

APPENDIX D 

Write (16) symbolically in the form 

10 = W[A, T,€]. (01) 

Consider two real numbers Ao, To > 0 and let 101 

be the solution of 

(D2) 

The existence of 101 was proved in Appendix A. Now 
for complex values of A and T in the neighborhood 
of Ao, and To, we shall solve (D 1) by iteration: 

102 = W[A, T, 101], 

lOa = W[A, T, 102], etc. 

It can be shown that in a sufficiently small complex 
neighborhood R1 of (Ao, To),€n ->- lOco as n ->- 00, 

uniformly in k, T, and A. Since IOn is analytic in A and 
T within R1 , so is lOco. It then easily follows that P as 
computed from (25) is analytic in A and T within Rl . 

APPENDIX E 

To prove (47) and (48) we define the kernel of (43): 

17-1C 
K(k, q) = . (El) 

[c 2 + (k - q)2][1 + exp €(q)/T] 

Equation (43) is then equivalent to 

Let 

or 

(1 - K)g = (ka'K(k, q)[l + exp €(q)/TJ dq. (E2) 
Jka 

(1 + L)(1 - K) = 1 

L - K = LK. 

(E3) 

(E4) 
Equation (E2) gives 

g(k) = (ka'L(k, q)[l + exp €(q)/TJ dq. 
Jka 

(E5) 

Now, the K' of (Bl) is a symmetrical kernel with a 
symmetrical inverse kernel. From that fact we easily 
obtain 

L(k, q)[1 + exp €(q)/TJ = L(q, k)[1 + exp €(k)/TJ. 

(E6) 

Two other useful formulas can be obtained as follows. 
Equation (17) can be rewritten as 

(1 - K)f = (217)-1. 

Operating with 1 + L on both sides we obtain 

f = (217)-1 + (217)-IL: L(k, q) dq. (E7) 

Similarly, differentiation of (16) with respect to k 
yields 

d€ = 2k + K d€ . 
dk dk 

Thus, 

d€ = 2k + (CO L(k, q)2q dq. 
dk 1-co 

Now, by (41), 

Xp = g/[1 + exp (€/T)] .. 

Thus, (45) becomes 

11K = k' _ k + (CO g(k) dk 
a a J-co 1 + exp €(k)/T 

= k~ - ka + L: dk L:a'dqL(k, q) 

X [1 + exp €(q)/T][1 + exp €(k)/Ttl 

= k~ - ka + L:dkL:a'dqL(q, k) 

= k~ - ka + (ka'dq[217f(q) - 1], 
Jka 

yielding (47). Similarly we derive (48). 

APPENDIX F 

(E8) 

We shall prove here rigorously that, for the ground 
state, the k's of Sec. II approach a distribution 
Lp(k) dk as L ->- 00, N ->- 00 proportionally. By con­
tinuing with respect to c-1 and the theorem of Sec. II, 
we know that for the ground state the I's form a 
close-packed set of integers or half-odd integers. 
We now define, as in (8), 

h(k) = k - L-1 L O(k - k'), (Fl) 
k' 

Clearly, 

dh = 1 + 2c '" 1 1 
dk L f c2 + (k - k')2 > . (F2) 

Equation (Fl) defines h(k) for all real values of k. At 
the successive values of k;, the successive values of 
h(k j ) are 2171;/ L, by (4). Thus, the successive values 
of h form a lattice, with a lattice constant of 217/L, 
extending between ±(N - 1)17L-I. It is sometimes 
convenient to use h as the variable rather than k. 
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k(h) is then a monotonically increasing odd function, 
defined for all real h, and approaches co as h -+ 00. 

Differentiation of (Fl) gives, writing dh/dk = hI, 

h (k) - 1 2c "" 1 
1 - + L f c2 + (k _ k')2 

c fN1T'L 1 
= 1 + - 2 dh' + residue. 

7T -N1T/L c2 + (k - k') 
(F3) 

The residue is in absolute value less than AIL-I, since 
the integrand has a bounded derivative. Thus, 

x fQ 2 1 2 htCk') dk' + O(L-I
), 

-Q c + (k - k') 
(F4) 

2N7T/L =fQ hICk') dk'. (FS) 
-Q 

It is now possible to complete the proof. We first use 
hI > I to obtain, from (FS), 

Q < N7T/L. (F6) 

With this fixed bound for Q, the inverse kernel for 
the integral equation (F4) is also absolutely bounded 
and we obtain 

hl(k) = l(k, Q) + O(L-I), (F7) 

where 1 (k, Q) is the solution of (F4) when O(L-I) is 
deleted. Integration of (F7) gives 

2N7T/L = L: l(k, Q) dk + o(rI). (F8) 

Thus, for fixed N/L, as L -+ co, Q approaches a limit 
Qo given by 

27TN/L = L:ol(k, Qo)dk. (F9) 

The rest is easy. 
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On the Growth of the Number of Bound States with Increase 
in Potential Strength* 
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For a wide class of potentials, it is shown that N().), the number of bound states (including multiplicity) 
of -~ + ).V, obeys the conditions 

for)' sufficiently large. A and B are positive finite numbers. In the centrally symmetric cases, a related 
growth condition on Imax().), the largest I channel with bound states, is also obtained, namely, 

aAt < Imax(A) < bAl. 

Finally, we discuss analogous results for a larger class of central potentials and for the many-body case. 

I. INTRODUCTION 

There are a fairly large number of results giving both 
lower and upper bounds on the number of bound 
states in a given I channel for a central potential.l-8 

From these, limits can be developed on the growth of 
the number of states in a fixed channel as the strength 
of the potential increases. The strongest general result 
of this nature has been obtained by Calogero.4 If 
nz(AV) is the number of bound states (not counting 
multiplicity) of angular momentum I for the operator 
-d + AV, then Calogero shows that 

CAl < nz(AV) < D).i 

for A sufficiently large (A will always be positive in this 
paper) and for a large class of potentials. C and Dare, 
of course, V- and I-dependent (actually, D can be 
chosen independently of I). 

For a restricted class of potentials (negative non­
increasing as r ->- 0), Chadan6 has shown that 

Iimnz(AV)/A! 
).-+ 00 

exists and has a simple form in terms of V. 
For some reason, there seem to be almost no 

results on the growth of the total number of bound 

* This research partially sponsored under Air Force Research and 
Development Command contract AF49(638)1545. 

t National Science Foundation pre-doctoral fellow. 
1 V. Bargmann, Proc. Natl. Acad. Sci. U.S. 38, 961 (1952). 
sF. Calogero, Nuovo Cimento 36, 199 (1965). 
• J. Schwinger, Proc. Natl. Acad. Sci. U.S. 47, 122 (1961); F. 

Calogero, J. Math. Phys. 6, 161 (1965). 
• F. Calogero, Commun. Math. Phys. 1, 80 (1965). 
• F. Calogero, J. Math. Phys. 6, 1105 (1965); W. Frank, ibid. 8, 

466, (1967); G. Ghirardi and A. Rimini, ibid. 6, 40 (1965). 
6 K. Chadan, Nuovo Cimento 58A, 191 (1968). 
7 J. H. E. Cohn, J. London Math. Soc. 40, 523 (1965); 41, 474 

(1966). 
8 A complete and coherent presentation of Calogero's results 

(Refs. 2-5) can be found in F. Calogero, Variable Phase Approach to 
Potential Scattering (Academic Press Inc., New York, 1967). 

states (counting multiplicity) 
00 

N(V) = ! (21 + l)nz(V). 
z=o 

In this paper we show that, for a large class of not 
necessarily central potentials, there are nonzero 
constants A and B such that, for sufficiently large 
A (Theorems 2, 3, and 6), 

AA~ < N(AV) < BA~. (I) 

We also show (Theorems I and 5) that the number 
of angular-momentum channels with bound states 
goes as A!. 

The conditions we impose on centrally symmetric 
V are the following: 

(A) For all A, -d + AV has no eigenvalues of 
positive energy and the negative-energy spectrum is 
purely discrete of finite multiplicity. 

(B) I(V) == S: dr r W(r)1 < 00. 

(C) inf[r2V(r)] == - L > - 00. 

(D) For some ex > 0, {r I VCr) < -O(} has a non­
empty interior. 

The characterization of the negative spectrum in 
(A) can be assured by very weak conditions.9 The 
absence of positive-energy bound states is assured by 
fairly mild conditions.lO 

(B) is the standard condition of Jost 'and Pais.ll It 
can be replaced by the alternate condition: 

(B') V is minorized by a monotonically increasing 
potential V with 

Q(V) = loo dr W(r)l! < 00. 

• T. Kato, Progr. Theoret. Phys. (Kyoto) Suppl. 40, 3 (1967); R. 
Courant and D. Hilbert, Methods of Mathematical Physics (Inter­
science Publishers. Inc .• New York, 1953), Vol. I, p. 448. 

10 T. Kato, Commun. Pure Appl. Math. 12, i 403 (1959); F. 
Odeh, Proc.-Am. Math. Soc.' 16,363"; B'-Simon, Commun. Pure 
Appl. Math. (to be published); J. Weidmann, Math. Z. 98, 268 (1967). 

11 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951). 
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We prove our results initially in the centrally sym­
metric case and discuss the easy extensions to the 
noncentral case in Sec. V. 

II. THE UPPER BOUND 

First we remark that there is an upper bound 
weaker than ours implicit in Bargmann's result1 that 

n1(W) < I(W)/21 + 1 (2) 

for any potential W. For then nl ( W) = 0, if 21 + 1 > 
leW), so that 

[([-1)/2) 

N(W) < L (21 + l)n 1(W) 
1=0 

< 1{1 + [lU - 1m < tI(1 + 1). 

For W = AV, leW) = U(V), so we see that 

N(AV) < lzA1(AI + 1) < 12A2, for A> (I)-I. 

Our stronger result is obtained by a better estimate of 
the maximum I-channel with a bound state in it; we 
designate this I-value Imax(A). 

Theorem I: If (A) and (C) hold, then for all A, 

ImaiA) < (L)?!)J. 

ProoJI2: Since -d2/dr2 is a positive operator and 
-~ + AV has no positive eigenvalues, there are no 
bound states in the I channel, if 

1(1 + 1)/r2 + AV(r) > 0, for all r. 
But 

l(l + 1)/r2 + AV > r-2[l(l + 1) - AL), 

so nl(AV) = 0, if l(l + 1) > AL; i.e., if 

I> (AL)!, then n1(AV) = 0, i.e., Imax(A) < (AL)!. 

Q.E.D. 

Theorem 2: If (A), (B), and (C) hold, then, for all 
A> L-1, 

so 

N(AV) < [2L!I]A~. 
Proof' By Bargmann's condition (2), 

(21 + 1)nz(AV) < AI, 

~max 

N(AV) < L (21 + 1)ntC2V) < (U)(lmax + 1) 
1=0 

< (A1)(A! Lt + 1) < 2A~ ILl'! 

if AL > 1. Q.E.D. 

If (B') holds instead of (B), we replace Bargmann's 
bound (2) with that of Caloger02 (see also Ref. 7): 

n1(V) < (2j1T)Q(V), for alII. (3) 

12 An alternate proof can be based on the bound given in F. 
Calogero and G. Cosenza, Nuovo Cimento 45, 867 (1966). 

Theorem 3: If (A), (B'), and (C) hold, then for all 
2> L-1, 

N(AV) < (8/1T)LQ(V»)J. 

Proof' From Calogero's condition, 

np V) ~ At [(2/1T)Q( V)], 
so that 

N(lV) ~ A![~Q(V)J II~x(21 + 1) 

= At [(2/1T)Q(V)](lmax + 1)2 

~ l![(8/7T)LQ(V)], 
if AL ~ 1. 

III. A STRONG RAYLEIGH-RITZ PRINCIPLE 

The nub of the proofs of the lower bounds is a form 
of the Rayleigh-Ritz principle which is more explicit 
than is usually found. While Theorem 4 is no doubt 
well known, its value for proving the existence of 
bound states does not seem to have been fully appre­
ciated. It is essentially the principle used by Kato in 
his proof that the helium Hamiltonian has at least 
25 585 bound states.13 

Theorem 4: Let H be a self-adjoint operator on a 
domain D and let 

fln = sup { inf (':P', H':P')}, 
<1>" ••• ,<1>n-1 'i'E U (<1>, , ... ,<1>n-1) 

where 

U(<I\ , ... , <I> n-1) 

= {':P'I ':P' E D, II\P' II = 1 and (<1>;, ':P') = a}. 

Then for each fixed n, either 
(a) fln is the nth eigenvalue counting multiplicity 

or 
(b) fln is the bottom of the essential spectrum and 

fln = fln+1 = fln+2 = .... 
Moreover, there are at most n - 1 eigenvalues less 

than fln . (The essential spectrum is the set of points in 
the spectrum which are not isolated points of finite 
multiplicity.) The theorem holds if we replace D in the 
definition of U, by Do, the domain of H as a bilinear 
form, i.e., the domain of IHI! as an operator. 

We do not write out a proof of this theorem, as it is 
completely straightforward if one is willing to use a 
little spectral theory. The power of Theorem 4 comes 
when it is combined with condition (A); for if fln is 
negative and (A) holds, then (b) cannot be true and so 
(a) must hold. We remark that in application, H is 
either - ~ + V or - ~ + V restricted to an angular­
momentum subspace. 

13 T. Kato, Trans. Am. Math. Soc. 70, 212 (1951). 
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We first prove some corollaries which we need. 

Corollary 1: If (D) holds, then -Ll + AV has a 
bound p-state for A sufficiently large. 

Proof Pick a smooth function 4> of r of compact 
support, so that support of 4> is contained in the set 
with VCr) < O. Let 'Y(r, (), 4» = r4>(r) Yf«() , 4». Then 
('Y, V'Y) < 0 and so, for A sufficiently large, 
-('Y, Ll'Y) + A('Y, V'Y) < 0, i.e., -Ll + AV has a 
bound p-state. 

Corollary 2: nl(AV) is a monotonically increasing 
function of A. 

Proof 

-~ + AoW= Ao(-~ + W) + (l - Ao)(-M. 

For Ao > 1, (1 - Ao)( - Ll) is a negative operator, so 
that by Theorem 4 applied to the operators on the 
space offunctions of angular momentum I, ntCAoW) ~ 
nl(W), for all W. Letting W = AV and AoA = A1, we 
see that nl(A1V) ~ nl(AV) if A1 > A. 

Corollary 3: For any central potential V, and for 
I ~ 1, 

Proof 

__ d + l(l + 1) + --.:../(1_+'----'-1) V 
dr2 r2 2 

= l(l + 1) {_ ~ + ~ + V} 
2 dr2 r2 

+ 2 - l(l + 1)(_ ~), (4) 
2 dr2 

where 

2 - 1(1 + 1)(_ ~) 
2 dr2 

is negative, so that the left-hand side of (4) has at 
least as many bound states as the right-hand side, i.e., 

Corollary 4: Let V1 obey condition (A) and let V2 by 
any potential with V2(r) ~ V1(r) for all r. If all the 
negative-energy eigenfunctions of -,:l + V2 are in the 
domain of -Ll + V1 as a bilinear form, then N(AV1) 
is at least as large as the number of negative-energy 
eigenvalues of AV2 • 

The proof is trivial; however, we remark that care­
ful applications should not ignore the domain con-

dition. We do not have a pathological V2 in mind 
when we distinguish the negative-energy eigenvalues; 
rather we will not require V2 to go toO at 00 and, in 
fact, will take V2 -+ 00 as r -+ 00. 

IV. THE LOWER BOUNDS 

Theorem S: Let V obey (A) and (D) and suppose 
n1(AoV) ~ 1. Then, for A > Ao, 

lmax(A) ~ (lAo!)A!. 

[Note: By Corollary 1, (D) implies that some Ao exists.] 

Proof: By Corollary 3, 

nHAol(l + 1)V] ~ l. 

Thus, if A ~ lAo/(l + 1), nl(AV) ~ 1 (by Corollary 2). 
Thus, if [::;; (A/Aoi 2 and I ~ 1, n1(AV) ~ 1; i.e., 

Imax(A) ~ [(~)!J ~ H~r if A ~ Ao· 

Corollary 5: If V obeys conditions (A) and (D), 
then, for all A ~ Ao (Ao as in Theorem 5), 

N(AV) > A/Ao. 
Proof 

lmax 

N(A) > I (21 + 1) = (lmax + 1)2 
1=0 

~ {[(A/Ao)~] + 1}2 ~ A/Ao• Q.E.D. 

To get an improvement on the growth rate of 
Corollary 5, a comparison with specific potentials 
seems necessary. A comparison proof is also possible 
for obtaining the upper bounds. 

Lemma 1: Let D be the region of IRa with 

Ix - xol < L, Iy - Yol < L, IZ - Zol < L, 

and let 

{
-P, xED, . 

Vo(r) = wIth P > O. 
00, xED, 

Let N(AVo) be the number of bound states of negative 
energy for - ~ + AVo. Then for A sufficiently large, 

N(AVo) > AAtt. 

Proof' The eigenvalues of -~ + AVo are 

where n1 , n2 , na are positive integers. Thus, N(AVo) 
asymptotically approaches the volume of an octant 
of a sphere of radius CA!. As a result, N(AVo)/A! 
actually approaches a limit which is positive. 



                                                                                                                                    

1126 BARRY SIMON 

Theorem 6: Let V obey (C) and (D) and suppose 
D(Ho + )'V) :::> D(Ho) n D(V), where D(X) is the 
domain of X as a bilinear form. Then, for)' sufficiently 
large: 

N()'V) ~ A).l. 

Proof" Pick a ball B in fR 3 so that VCr) < -Pin B. 
Inside B, find a region D as in Lemma I and let Vo 
be as in that lemma. The eigenfunctions for the square 
well are in D(V) by (C) and they are in D(Ho) [they are 
not in the domain of Ho as an operator; to be in 
D(Ho) , they need only possess L2 first derivatives]; 
thus, from the domain condition, Corollary 4, and 
Lemma I, the theorem follows. Q.E.D. 

We remark first that condition (C) is much stronger 
than what we need. It is sufficient that Vbe negative in 
some ball B for which 

We also remark that it is almost inconceivable that 
one can make sense out of Ho + V without having the 
domain condition hold. Examples of classes of V for 
which it must hold are: 

(1) V E L2 + L co (Kato potentials); 
(2) V bounded below, Ho +).V defined by the 

Friedrichs' extension method; 
(3) VEL co + L~, in which case one can show that 

Ho + ).V is bounded below and so Friedrichs' ex­
tension can be used. 

V. EXTENSIONS TO MORE GENERAL CASES 

To N dimensions: It is a little enlightening to note 
that in N dimensions ).~ is replaced by ).N/2; for 
example, our comparison potential, the harmonic 
oscillator, has N().Vo) "-' ).N/2. Thus, we can under­
stand the fact nl().V) ,,-,).t by realizing that the 
single-channel Schrodinger equation is essentially 
I-dimensional. 

To noncentral potentials: The proof of Theorem 6 
carries over without change to the noncentral case. 
To obtain an upper bound, we need only a simple 
comparison potential. Let 

Vmin(r) = min VCr). 
Irl~r 

Then, since Vmin < V, we have N().Vmin) > N()'V). 
If Vmin obeys (A), (B), and (C), the upper bound 
given by Theorem 2 yields an upper bound for N()'V). 

To the many-body case: As with most problems in 
nonrelativistic potential theory, things really get 
interesting in the many-body case. Also as with most 
problems, the two-body methods are not capable of 
extension. In this case, there are negative-energy 
continua (due to relative motion of bound clusters) 
which complicate the analysis and invalidate all the 
arguments we have used in the two-body case. 
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The basic idea of super Hilbert space is to represent physical states by continuous linear functionals on 
a space of good functions, rather than by functions in a Hilbert space. Since L. is in one-to-one corre­
spondence with a subset of super Hilbert 'space, everything that can be done in L2 can be done in super 
Hilbert space. In addition, however, it is possible to have a time operator and thus to base relativistic 
quantum mechanics on covariant four-dimensional commutation relations. 

1. INTRODUCTION 

There has always been a certain tension in modern 
physics caused by the fact that special relativity 
demands that space and time be treated on an equiv­
alent footing, whereas nonrelativistic quantum me­
chanics (and ultimately all quantum mechanics) is 
based upon the three-dimensional commutation rela­
tion 

operators as the z component of the angular momen­
tum and the number op'!rator. In fact, q and p and 
linear combinations of them are the only operators 
which do have canonical conjugates in Hilbert space. 

In the "super Hilbert space" which is developed in 
Sec. 2, the above argument does not hold and we 
show in Sec. 3 how to construct a canonical conjugate 
for a broad class of operators. In Secs. 4 and 5 we 

[p, q] = -in. (1.1) discuss the classical and quantum-mechanical time 
operators and solve for them explicitly for the free 
particle and the harmonic oscillator. In Sec. 6, we dis­
cuss the time-delay operator in scattering theory. 

The fourth component of the commutation relation 
in (1.1) would naturally be 

[B, T] = -in, (1.2) In Sec. 7 some comments are made on relativistic 
quantum mechanics in super Hilbert space. In Secs. 
8 and 9 we discuss norms and the uncertainty principle, 
respectivel y. 

where B is the Hamiltonian and T is a Hermitian time 
operator. 

As Pauli! pointed out long ago, no such operator 
can exist in Hilbert space. The reason for this is the 
following: If T is a Hermitian operator in Hilbert 
space and oc is a real number, then exp (iIXT) is a 
unitary operator in Hilbert space. (In fact, every 
continuous one-parameter group of unitary trans­
formations {,uo:} in Hilbert space can be written 
,uo: = exp (iocA), for some Hermitian operator 1.2) 

Then, if T satisfies (1.2) for some Hermitian operator 
Band "PE is an eigenfunction of fI with eigenvalue 
E, exp (iIXT}IPE is an eigenfunction of B with eigen­
value E + rxn. Since rx is an arbitrary real number, 
then, if T is a Hermitian operator in Hilbert space and 
satisfies (1.2), Bmust have a continuum of eigenvalues 
from - 00 to + 00. The result of this old argument is 
that for any Hermitian operator in Hilbert space fI 
which does not have a continuum of eigenvalues from 
- 00 to 00, no Hermitian operator T exists in Hilbert 
space which satisfies (1.2). 

We call pairs of operators which satisfy (1.2) 
canonical conjugates. It is not only the Hamiltonian 
which has no canonical conjugate, but also such 

1 W. Pauli, Handbuch der Physik, Vol. 24/1, p. 143. 
2 F. Riesz and B. Sz.-Nagy, Functional Analysis (Frederick Ungar 

Pub!. Co., New York, 1955), p. 385. 

The basic idea of the super-Hilbert-space treatment 
of quantum mechanics is to consider the state of a 
quantum-mechanical system to be represented by a 
continuous linear functional on a space M, rather 
than by a function. Since there is an isomorphism 
between L2 and a subset of all the continuous linear 
functionals on the M's chosen, everything that can be 
done in L2 can be done in super Hilbert space, but 
the reverse is not true. 

Commonly used functions, such as exp (ikx), 
lxi, and b(x), do not exist in L 2 • Furthermore, even 
though Hamiltonians containing potentials which are 
inverse powers of x are commonly considered oper­
ators, inverse powers of the operators p and q are not 
operators in L 2 • For example, if we define q by 
qP/(x) == xPf(x) for all f3 and f(x) , then for any 
f3 > 0 we can find an IX such that x-O: exp (-x2) E L 2 , 

but q-Px-a exp (-x2) = x-a- p exp (-x2) ¢: L 2 • We 
have only to pick IX so that t > IX > t - fJ. The 
argument is the same in three dimensions except that 
t is replaced by i. In super Hilbert space, the existence 
of all the derivatives of every member is guaranteed 
and all the commonly used functions, such as 
exp (ikx), lxi, and b(x), can be represented as func­
tionals in super Hilbert space. 

1127 
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The real importance, however, of the super-Hilbert­
space formulation of quantum mechanics lies in the 
ability to base the difference between classical and 
quantum mechanics on four-dimensional commuta­
tion relations, such as [pI', tjvl = - iM~. From this 
basis it may be possible to construct a natural and 
manifestly covariant relativistic quantum mechanics. 

2. THE MATHEMATICAL STRUCTURE 

In the interests of simplicity and clarity we discuss 
the structure based on L2 and consider only one­
dimensional space. The results can easily be extended 
to any Hilbert space. 

Consider first the set S of functions which are 
everywhere differentiable any number of times and 
such that they and all their derivatives fall off at 
infinity faster than the inverse of any polynomial. 
We call such functions "good functions," after 
LighthilJ.3 Under the usual concept of convergence in 
L2 , S is an everywhere-dense subset of L2 • In this 
paper, however, we define convergence in any linear 
function space M which contains S as follows. {<I>n}, 
a sequence of functions in M, is said to converge to a 
function <I>(x), if-for allj (including zero), in every 
bounded region in which <I>(x) has j derivatives-the 
first j derivatives of all the <I> n exist and converge 
uniformly to the corresponding derivatives of <I>(x), 
and if the <l>n satisfy the condition that the constants 
Ckm (m ~ j; k = 0, I, 2, ... ) in 

I k d
m I x dxm <l>n(x) ~ Ckm (2.1) 

can be chosen independent of n in every closed set in 
which <I>(x) is defined and has m derivatives. ± 00 are 
counted as points in the definition of "closed" here. 

Consider the space M* of functions which are the 
complex conjugates of the functions in M. If M 
and M* contain the same elements, we call M "sym­
metrical." We assume that all function spaces used in 
this paper are symmetrical. A linear symmetrical 
space of functions which includes S will be called a 
"fine" space. 

The dual space of M, M', is the set of all continuous 
linear functionals on M. In order to make this 
meaningful, we must define "continuous." The de­
pendence of a general element of Mt, called a 
"generalized function," on the space M can be written 
F(f) or (F,f), wherefis an element of M and F is the 
particular functional in Mt. For a particular fand F, 
(F,f) is a complex number. A linear functional F is 

3 M. J. Lighthill, Fourier Analysis and Generalized Functions 
(Cambridge University Press, Cambridge, England, 1959). 

said to be continuous at f if the 

lim (F,jn) = (F,j) (2.2) 
n-+ ro 

for every sequence of functions in M, Un}, which 
converges to f It is a well-known theorem offunctional 
analysis4 that if a linear functional F is continuous at 
some point (fo) of M, then it is continuous everywhere 
in M. 

A given generalized function F is defined on some 
space M ~ S, which we call the "domain" of F and 
write as j)(F). A sequence of generalized functions 
{Fn} is said to converge to the generalized function F 
if j)(Fn) ~ j)(F) for all Fn and if, for every f(x) in 
j)(F) , 

(2.3) 

Let W be the set of all continuous linear functionalS' 
whose domain is a fine space. Addition of two elements 
in W is defined by 

(F1 + F2,f) == (FI,f) + (F2,f), (2.4) 

for arbitrary f in j)(FI) n j)(F2)' Multiplication of an 
element of W by a complex number a is defined by 

(aF,f) == a*(F,f), (2.5) 

for arbitrary f in j)(F), where the * denotes complex 
conjugation. Multiplication of an element in W by 
a complex infinitely differentiable function a(x), 
bounded by some polynomial, is defined by 

(a(x)F,f) == (F, a*(x)f), (2.6) 

for arbitrary fsuch that a*(x)fE j)(F). F* is defined by 

(F*,f) == (F,f*) * , (2.7) 

for arbitrary f such that f* E j)(F). 
We now define the bilinear form (j, F) where the 

element on the left comes from M and the element 
on the right from Mt by 

(j, F) == (F,f)*. (2.8) 

Note that (F,f) as defined above is a symmetric 
bilinear form. As such it fulfills all the requirements 
of an inner product except that, since the left and 
right components are drawn from different spaces, 
the additional requirement of being strictly positive 
has no meaning here. We now proceed to give it a 
meamng. 

We can define a "natural" one-to-one correspond­
ence between the elements of the space S and a subset 
of elements in W. This can be seen as follows. With 
every functionf(x) in S we can associate a functional 

• A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of 
Functions and Functional Analysis (Graylock Press, Rochester, 
1957), Vol. I, p. 77. 
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F in 'ill whose domain is S, by 

(F, <1» = Lj*(X)<1>(X) dx, (2.9) 

for every function <1> in S, where the integral is a Rie­
mann integral. The integral in (2.9) converges for 
every f(x) and <1>(x) in S. Let W be the set of all 
complex-valued functions defined on a subset of the 
real line. We will define the zero elements in Wand 
'ill by 

(F,O) = 0; (O,f) = 0, (2.10) 

for all F in 'ill andfin W. Through (2.9) a givenfin 
S has a unique counterpart F in 'ill. If there were in S 
two functions, fl and f2' which both had the same 
counterpart in 'ill, then from (2.9), 

L: U:(x) - fi(x»<1>(x) dx = 0 (2.11) 

for every <1>(x) in S. But one such <1>(x) is f2(X) - fl (x). 
Thus, 

L:lf2(X) - fl(x)1
2 dx = O. (2.12) 

Since f2(X) - fleX) satisfies (2.12), is continuous 
everywhere, and goes to zero faster than the inverse 
of any polynomial, then f2(X) = fleX) everywhere. 
Thus we have proved that there is a one-to-one 
correspondence between the elements of S and the 
elements of a subset of 'ill defined by (2.9). If FI is an 
element of 'ill and is in one-to-one correspondence 
with an element fl of S through (2.9), we say that FI 
and fl are "counterparts" of one another. In the 
same way we could show that there is a one-to-one 
correspondence between a subset L2 of 'ill and L 2 • In 
fact, the substitution of f(x) for f*(x) on the right­
hand side of (2.9) defines an isomorphism between 
L2 and L 2 • 

The analog of the strictly positive requirement in 
the definition of an inner product can now be given. 
J f Fl is an element of 'ill which has a counterpart fl in 
S, then we define (Fl' <1» by 

(FI' <1» == Lji(X)<1>(X) dx, (2.13) 

for all <1> in S. It then follows that 

(2.14) 

for allfl in Sand (FI,fl) > 0, unlessfl(x) == O. Thus 
(F,f) is a generalized inner product. For the purposes 
of this paper we refer to it as the inner product. In 
order to clarify which element is in which space we 
henceforth write (F,f) as (F If), the angular bracket 

indicating that the element inside is in 'ill and the 
round bracket indicating that the element inside is in 
'D(F). To simplify the notation further we adopt a 
Dirac-type notation and write elements in W as If) 
and elements in 'ill as (Fl. Using this notation we 
write the counterpart of If) in 'ill as <fl. 

There is a one-to-one correspondence between M 
and M*. If f(x) E M, then we put f*(x) in M* in 
correspondence with it. We write the vector in M* 
which corresponds to If(x» in M as (f(x)l. The space 
of all continuous linear functionals on M* we denote 
by (M*)t. Since there is a one-to-one correspondence 
between M and M* , there is a one-to-one correspond­
ence between Mt and (M*)t. We write the vector in 
(M*)t which corresponds to (gl in Mt as Ig). The 
particular correspondence is that which makes [see 
(2.8)] : 

(g If(x» = (f(x) I g)*, (2.15) 

for every If(x» in 'D( (gl). Thus If(x», (f(x)l, If), and 
(fl are in one-to-one correspondence and are called 
"counterparts" of one another. 

Note that neither If(x» nor If) is a Dirac ket 
vector. If(x» is a function of x in W and If) is a linear 
functional in 'ill * , whereas the Dirac ket I"P) is a linear 
functional on a Hilbert space. [We nonetheless call 
If) a ket and <fl a bra. Perhaps we should call (fl an 
arb and If) a tek.] Thus for any Ig(x» , Ih(x», 
Ig(x» Ih(x» = Ig(x)h(x». Ig) If), however, has no 
meaning. 

Since there is an isomorphism between L2 and a 
subset of 'ill, we call 'ill EEl 'ill* "super Hilbert space" 
and denote it by 3. We denote the space W EEl W* 
by Z. 

The derivative (dh/dxl of a generalized function 
(hi is defined by 

(~~I<1>(X»);: -<hl~~)' (2.16) 

for every 1<1>(x» such that d<1>/dx E'D«hl). 
We define an operator as a linear mapping from a 

subspace of 3 into 3. Since the domain of an operator 
may be smaller than its range, we must take care in 
applying an operator more than once. 

The operators ij and p are defined as follows: 

ij If> == Ixf); p If) ;: iI1(d/dx) If). (2.17) 

We now show that (2.17) is sufficient to define ij on 
all of 'ill * . If If) is any ket in 'ill * ,it is easy to show that 
Ixf) is linear on 'D(lxf». Further, since for any (gl in 
S*, (xgl is in S* and, since (g I xf) = (xg If>, it 
follows that Ixf) is defined on every (gl in S*. It 
remains to be shown that Ix!> is continuous on S*. 
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If g(k) is the kth derivative of g, 

I(xgn)(k) - (xg)(k)1 

= I ;tG)X(j)(g~k-;) - g(k-il) I 

~ ± (~) Ix(j)llg~-j) - g(k-;)I. (2.18) 
;=0 ) 

Thus if {g~k)} converges uniformly to g(k) for all k in 
every bounded interval, {(xgnYk)} converges uniformly 
to (xg)(k) for all k in every bounded interval. Also, 
since 

~ Ixk+1g~m)1 + m Ixkg~m-l)l, (2.19) 

if {gn} satisfies (2.1), {xgn} also satisfies (2.1). Thus if 
{gn} converges to g, {xgn} converges to xg. It follows 
that the continuity of Ixf) on S is assured by the con­
tinuity of If>. Therefore, for all If> in 'U.l*, Ixf> is in 
'U.l* and the domain of ij is indeed all of 'U.l*. The 
corresponding proof that (2.17) defines fl on all of 'U.l* 
is even easier and will be left to the reader. 

We denote by S the set of elements in 'U.l which are in 
one-to-one correspondence with S through (2.9). 
Since the domain of ij and fl is all of 'U.l*, any poly­
nomial in fl and ij is an operator. It is also true that any 
polynomial in fl and ij takes an element in S* into 
an element in S*. But d 1f>ldx = i1 If> does not in 
general imply If> = exp (ix1) If>, for some If(O» , 
even if 1 is independent of x, since exp (ixA) is an 
infinite expansion. 

We denote the complement of S in 'U.l by 'U.l - S. 
We now show that there exist operators generated by 
x and fl which take any element in S* into 'U.l* - S*. 
Consider the operator defined on S* by 

Jj(N) = N! exp ( _ N ij2). (2.20) 

For any If> in S* 

Jj(N) If> = IN! exp ( - N x2)f>. (2.21) 

IN! exp (-Nx2)f> is in S* for any N > O. We show, 
however, that the limN~oo Jj(N) If> is in 'U.l* - S*. 

For any (g(x) I in S*, 

l(g(x)1 (N/1T)! exp (-Nx2)f> - f*(O)g(O) I 

= I L: (:Y exp (-Nx
2
)f*(x)g(x) dx - f*(O)g(O) I 

= I L: (:t exp (_NX2)(f*(X)g(x) - j*(O)g(O» dx I 
~ max I :x (f*(x)g(x» I L: (:)! exp (_NX2) Ixl dx 

= max I :x (f*(x)g(x» I (1TN)-l ---+ 0, as N ---+ 00. 

(2.22) 

Thus b(oo) exists as an operator and 

1T-! Jj(oo) If> = If(x)o), (2.23) 

where If(x)O) has the property that, for any Ig(x» 
in S, 

(f(x)tJ I g(x» = (tJ If*(x)g(x» = f*(O)g(O). (2.24) 

We define the linear functional (01 on allf(x) defined 
at x = 0 by 

(0 If(x» == f(O). (2.25) 

Thus there exist operators generated by ij and fl 
which take elements of S* into elements of 'U.l* - S*. 

In addition, there exist denumerable combinations 
of ij and fl which are not operators at all. For example, 

E~(N)-~ 1 -2; 
="",-:-q 

;=0) ! 
(2.26) 

is a well-defined operator for any N. It takes any If> in 
S* into 

I f ~ ij2'l \ ;=O)! / 

in S* which is defined for any (g(x) I in S* by 

( 
I

N 1 . \ N 1 (00 . 
g(x) ;~oj! (r'f / = ;~oji )-00 dxx

2
'f(x)g*(x). (2.27) 

The operator 

t(oo) == lim t(N) = i ~ ij2 i 
N .... oo ;=o)! 

(2.28) 

does not exist, however, since t(oo) lexp (-exx2» = 
lexp [(1 - ex)X2]), which is not in general in 'U.l*, 
since (exp (-{Jx2)1 is in S*, but 

(2.29) 

does not converge for (ex + (J) ~ 1. 

A. Inverse Functionals 

In order to understand inverse operators we must 
first understand inverse functionals and the process of 
the regularization of functions with removable singu­
larities. 

By removable singularity we mean that, if f(x) has a 
singularity at x = y and if Ix - yl < €, then If(x) I < 
Ix - yl-N for some N(€). 

Letf(x) be a function locally summable everywhere 
except at xo, where it has a nonsummable singularity 
[for example,f(x) = X-I]. Then in general, 

F(<I» = Lj*(X)<I>(X) dx, <I>(x) E S 
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will diverge. The integral will converge, however, if 
<l>(x) vanishes in a neighborhood of x = Xo' A func­
tional with the same value as F for every <I>(x) in its 
domain which vanishes in a neighborhood of Xo is called 
a regularization off Gel'fand and Shilov5 show that 
every functionf(x) which has at most a finite number 
of removable singularities can be regularized. It is also 
true that no function having an infinite number of 
singularities in any finite interval can be regularized. 

We now define a "quasigood" function as any 
functionf(x) which has the following properties: 

(1) f(x) is regularizable. 
(2) Every derivative of f(x) is regularizable. 
(3) There exist real numbers e and N(e) such that if 

Ixl > E, then If(x) I < IxI N
• 

It follows that if f(x) is a quasigood function, every 
derivative of j(x) is a quasigood function. 

E is said to be a "regularization rule" for a set of 
regularizable functions C, if for every function j(x) in 
C, E defines a unique generalized function (:R(E,!)I on 
a fine space (which is the same for all functions in C), 
such that 

(:R(E,f) 1<1» = L!*(X)<l>(X) dx (2.30) 

for every <I>(x) in its domain which vanishes in a 
neighborhood of every locally nonsummable singu­
larity of f*(x). (:R(E,J) I is here called the regulariza­
tion off(x) according to rule E. 

We now show that there is a one-to-one correspond­
ence between a subset 6 i of'U) and a set of equivalence 
classes of functions J i , which are regularizable by rule 
E, . Let J, include only functions which have at most a 
finite number of discontinuities in any finite interval. 
Since (:R(Ei ,J)I, j E J i , is by definition a unique 
functional, it remains to be shown only that for two 
distinct (i.e., from different equivalence classes) 
functions in C,!l(X) andj2(x) , (:R(Ei ,J1)1 ~ (:R(Ei ,J2)1. 
Let <I>(x) be a function in ~«:R,,JI) which vanishes in 
a neighborhood of every locally nonsummable singu­
larity of fi.(x) and fi(x). Then if (:R(Ei ,j1)1 = 
(:R(E; ,h)1 on ~(:R(E; ,J)I), we have 

L: (fi(x) - fi(x»<I>(x) dx = 0 (2.31) 

for every such <I>(x). 

continuous in some neighborhood of z. Assume 
j1(Z) - f2(z) ~ O. Then in some neighborhood, 
Z - e < X < Z + e, f1(X) - f2(X) is continuous and 
everywhere positive or everywhere negative. But if we 
pick 

<7(Z) = ftCz) - f2(Z) ; 
I/J<z) - fb)1 

<I>(x) === <7(z) exp [- 2 e
2 

2J, (2.32) 
E - (x - z) 

for Z - E ::;; X ::;; Z + e, 

=== 0, elsewhere, 

the integral in (2.31) is greater than zero. Thus 
f1(Z) - f2(Z) = 0 and!l(z) = f2(Z) except at most of 
the finite number of points at which [f1(z) - f2(Z)] is 
not defined. The equivalence classes are thus made of 
those functions which differ only on a set of measure 
~o. QE~ 

Let J be the set of all quasigood functions. We can 
divide J into mutually exclusive sets Ji , such that Ji in 
J is in one-to-one correspondence with 6; in 'U). The 
6; are not necessarily disjoint. We denote by it the 
union of all these 6i' We denote J U J* by K. And 
defining 6* to have the same relation to J* as 6 has to 
J, we denote 6 U 6 * by JC 

Let Qn-1 be the set of all functions which are 
everywhere differentiable any number of times and 
which rise less fast than x n- l as Ixl -+ 00. There are 
many regularizations of x-no The most obvious is 
given by defining (x-nl on Qn-1 by 

J 00 {n-1 } 
(x-n 

I <1» === -00 dxx-n <I>(x) - m~}xm/m !)<I>:~) , 

(2.33) 

where <I>(m) = [(dm/dx"')<I>(x)] (0) - L,,~o)' 

It is easy to show that (x-nl is linear on Qn-1' In 
view of the linearity of Qn-1, it is then sufficient to 
show that (x-nl is continuous at x = O. Let {<I>t} be a 
sequence in Qn-1 which converges to zero. 

If we let ; 

n-1 
AtCx) === <l>tCx) - .2 (xm/m!)<1>;;;:~ === B t + iCt, (2.34) 

m~O 

where Bt === Re (At) and Ct === 1m (At), then Bt and 
C t can be written in the form5 

The function h (x) - f2(X) has a finite number of 
singular points in any finite region. Let z be a non­
singular point of f1(x) - !2(X). Then f1(x) - !2(X) is 

• 1. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. 1 
(Academic Press Inc., New York, 1964), Chap. I. 

BtCx) = <I>~~)(XI)Xn/n!; Ct = <l>~~)(XI)xn/n!, (2.35) 

where <l>tr is the real part of <l>t, <l>ti is the imaginary 
part of <l>t, and 0 < Xl < X. 
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For any b > 0, 

(x-n I <1\) = L-~dXX-nAb) 

+ (OOdxx-nAb) +fb dxx-nAb). (2.36) 
Jb -b 

Since S~OO dxx-n At(x) converges, for any given t we can 
make b sufficiently large so that the absolute value of 
the sum of the first two integrals on the right-hand 
side of (2.36) is less than E/2. Also, 

LbbdXX-nAb) = :! LbbdX<P~~)(Xl(X» 
+ ~ fb dx<P~~)(Xl(X», (2.37) 

n! -b 

Since {<P t } converges to zero, for any given b we can 
find t sufficiently large so that 

1<p~n)(xl)1 < n! E/(8b). (2.38) 
It follows that 

1<P:~)(xl)1 < n! E/(8b); 1<P~(xl)1 < n! E/(8b). (2.39) 

Thus, for any given b, we can make t sufficiently large 
so that 

fb dxx-nAix) < ~. 
-b 2 

Thus if {<P t } converges to zero, it follows that for any 
given E we can find a t sufficiently large so that 

(x-n I <Pt) < E. (2.40) 

Thus, (x-nl is continuous on Qn-l' 

B. Adjoint Operators, Compatible Spaces, and 
Eigenvalues 

We have previously shown that any polynomial in 
i and p maps from S into S. Similarly, any finite 
combination of positive or negative integer powers of 
i and p map from .3(, into .3(,. 

Let G be any set in 3. G* will denote the set whose 
elements are the counterparts in 3 of those in G. It 
follows that for any such G, G** = G. Though the 
* operation here is really counterpart conjugation, it is 
analogous to complex conjugation in Z, and we call it 
complex conjugation here also. With this usage it 
follows that (Mt)* = (M*)t, and we here drop the 
parentheses and write just Mh or M*t. 

If A If) E M*t, then (A If»* E Mt. We define A* 
by 

<11 A* == (A If»*. (2.41) 

Since (A If»** = «fl A*)* = A If), it is natural to 
define A* * == A. Also it follows from (2.8) that for any 

If) and (gl, 
(fl A* Ig) = (gl A If)*. (2.42) 

If X is a set of functions, and Y is a set of continuous 
linear functionals each of whose domain includes X, 
then X is said to be "in the domain of" Y. 

Let F and G be fine sets of functions. Let:F and !;I 
be sets of continuous linear functionals such that F is 
in the domain of !;I and G is in the domain of :F. Let 
(gl E !;I; Ig) E G; <11 E :F; If) E F. If it is possible to 
establish a one-to-one correspondence between :F and 
F, where If) denotes the function corresponding to 
(fl, and a one-to-one correspondence between !;I and 
G, where Ig) denotes the function corresponding to 
(gl, such that 

(g If) = <11 g)* (2.43) 

for all If) in F and Ig) in G, then F, G, :F, and !;I are 
said to be "compatible." Note that If) is not neces­
sarily in the domain of <11. If F = G and :F = !;I, F 
and:F are said to be "self-compatible." For example, 
L2 is self-compatible. An example of compatible but 
not self-compatible spaces is provided by the follow­
ing. If J i is a set of functions including S which are 
regularizable by rule E, and 'Ji is a subset ofW, which 
is in one-to-one correspondence with J i through 
putting (fl == (:R(E,j) I as in (2.30), then if F = J i ; 

:F = 'J i; G = S; and if !;I is defined as the set of all 
(gl defined by (2.43), then J i , 'Ji , S, and !;I are com­
patible. 

Using (2.15), which defined If) in terms of (fl, 
(2.43) can be written 

(g If) = (g If>· (2.44) 

Let F, G, :F, and !;I be compatible sets. A is said to be 
"Hermitian" or "self-adjoint" on these compatible 
sets if 

(gl A If) = (gl A* If), 
for all (fl in :F and (gl in !;I. 

If> will be called the solution to 

A If> = Ig), 
if and only if 

(hi A If> = (h I g) 

(2.45) 

(2.46) 

(2.47) 

for all (hi in ~(Ig». The eigenvalue equation for A is 

A If> = fJ If>, (2.48) 

where the number {3 is an eigenvalue and If> is an 
eigenket. Equation (2.48) implies 

<fl A* = (fl {3*. (2.49) 

If <fl is a member of some set of functionals that is 
self-compatible, then (2.48) and (2.49) together imply 

(fl A If) - <11 A* If) == ({3 - {3*)(f I n. (2.50) 
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It follows that if A is self-adjoint on a self-compatible 
set of functionals, the eigenvalues of A associated 
with eigenkets in the set are real. 

C. The Fourier Transformation 

Two functionals that play very special roles are the 
Fourier transformation and the (151. The Fourier 
transform of every If(x» in S is in S. In fact,S the 
Fourier transformation maps S onto S. If every ele­
ment of a space D has a Fourier transform, we call D 
a "Fourier space." We call the space whose elements 
are the Fourier transforms of D the "Fourier trans­
formed space of D." Let M be a fine Fourier space. 
Let Ig) be the Fourier transformation of If(x)) , 
f(x) EM, and let (<1>1 be the Fourier transformation of 
("PI, ("PI E in Mt. Then ("P If(x» exists and we define 
(<1>1 by 

(<1> I g) == ("P If), (2.51) 

for all If) in M. Thus every ("PI in Mt has a Fourier 
transformation. Further, any series in the form 

00 
L an exp (inx), 

n-=-C() 

whose coefficients increase no faster than some power 
of n as n ---+ 00, can be put6 in one-to-one correspond­
ence with an element of W. 

We have previously defined the functional (151 by 
(15 If(x» ==f(O). Now we define a one-parameter 
class by (b(k) If(x» == f(k). The domain of (b(k) I is 
all those functions g(x), for which g(k) is defined. If 
g(x) is such a function, then (b(k) I g(x» == g(k). 
When several variables, x, y, Z, etc., are involved we 
write (tJ(k - x)1 to indicate that (b(k) I is a functional 
on those functions considered as functions of x. We 
define (a(x, k)b(k - x)1 on the set of allf(x) such that 
b~f(x) exists at x = k, and where a(x, k) is a quasi­
good function in x such that lim:1}->k (x - k)aa*(x, k) is 
finite and IX is the smallest nonnegative number for 
which it is finite, by 

(a(x, k)b(k - x) I J(x» 

== lim [a*(x, k)(x - ktr-\a + l)b:J(x)], (2.52) 
x .... k 

where r-I(IX + I) refers to the inverse of the usual 
r function. b~ is defined on all f(x) for which the 
integral in (2.53) converges for IX > 0, by 

b~J(x) = _1_ r'" (x _ t)P-I d
m 

J(t) dt, (2.53) 
I'(p) 1-00 dtm 

where rn is the least integer greater than IX and 
rn - IX == p. Thus, 0 < P ~ 1. If IX is an integer, 

6 W. Kaplan, Advanced Calculus (Addison-Wesley Pub!. Co., Inc., 
Reading, Mass., 1952), pp. 357-358. 

b~ = dajdxa. The definition of b~ is a slightly 
modified version of the usual definition of differentia­
tion to fractional orders. Note that (a(x, k)b(k - x)1 
is not a point function and that 

(a(x, k)b(k - x) If(x» =;6 (b(k - x) I a*(x, k)f(x» 

unless a*(x, k) is infinitely differentiable for all x. 
lSee (2.6)!] 

D. Orthogonality and Multidimensional Spaces 

If F, G, :F, and g are compatible sets, A is said to be 
an operator "upon" them if it maps :F into :F and g 
into g. Let A be an operator acting to the right upon 
the compatible sets F, G, :F, and g. That is, for every 
If) in :F and Ig) in g, 

A If) = Ih I ); Alg) = Ih2), (2.54) 

for some IhI ) in :F and Ih2) in g. We now define A 
acting to the ·left on these compatible sets by 

(gl A If) == (gl A If) (2.55) 

for all (gl in g* and If) in :F. 
It follows from (2.55) and (2.45) that A is Hermitian 

if and only if A = A*. 
Let :F be a self-compatible space and A an operator 

on it. Then if for some number (3 and some If) in :F 

A If> = (3 If), (2.56) 

it follows from (2.55) that, since by (2.43) (f I f) is 
real, 

<fIAlf) = (fl A If) = (3(f If) = (3(flf)· (2.57) 

Equation (2.57) implies that 

(fl A = (fl {3 + (hI, (2.58) 

where (hi satisfies 
(h If) = o. (2.59) 

We say that a set ofkets {If(n»} in a self-compatible 
space are "orthogonal" if (f(rn) If(n» = 0, for 
rn =;r!: n. If If(n» is an eigenket of A with eigenvalue 
(3(n), it follows from (2.58) that, for n =;r!: rn, 

0= (J(rn)(f(n) If(rn» = (f(n)1 A If(rn» 

= (f(n) I A If(rn» 

= (J(n)(f(n) /fern»~ + (h(n) /fern»~ = (h(n) !f(rn». 

(2.60) 

But since (2.59) tells us that (h(n) !f(n)) = 0, (h(n)1 is 
orthogonal to every eigenfunction of A. Thus if the 
eigenfunctions of A form a complete orthogonal set 
in:F, (h(n)1 = O. 

Let fj be an operator on the self-compatible space 
:F whose eigenkets form a complete orthogonal set in 
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:F. Let If(n» be the eigenket of B with eigenvalue 
{len). Then if A is an operator with domain g which 
satisfies 

[B, A] == SA - AS = -iii (2.61) 

on :F n g, it follows that for If(m» and If(n» in 
:F n g, 

-ili(f(m) If(n» = (f(m) I SA - AS If(n» 

= ({l(m) - {l(n»(f(m) I A If(n». 

(2.62) 

Consider a linear functional (FI defined on an 
appropriate set G of functions x and y. That is, 
(F If(x, y» is a complex number for every If(x, y» in 
G. Now consider a function of the form IK(x,y» = 
If(x» Ig(y». Then 

(F I K(x, y» = (F If(x» Ig(y» (2.63) 

is a number. (F If(x» , however, is a functional on the 
appropriate set of functions of y. Similarly, we define 
x(F I f(x)g(y» by 

x(F If(x)g(y» Ih(y» == (F If(x» Ig(y)h(y». (2.64) 

That is, if (F If(x» = (EI, where (EI is a functional 
on the appropriate set of functions of y, 

x(F If(x)g(y» = (g*(y)EI. (2.65) 

For some general function L(x, y) in the domain of 
(FI, we mean by x(F I L(x,y» that functional on the 
appropriate functions of y which is arrived at by 
considering y as a fixed parameter and calculating 
(F I L(x, y» as if L(x, y) were a function only of x. 

For each n we can view (f(m) If(n» in (2.62) as a 
functional on a set of functions of the variable repre­
sented by m. In fact, we could write it (f(x, m) If, n)x 
where the f in the ket denotes the functional acting in 
x space [in this case the counterpart of f(x)] and the 
n denotes the functional acting in m space. By con­
vention the order of variables in the function is made 
the same as the order of the indices in the functional 
acting on it, the index in the functional being in the 
same position as the variable acted upon. Thus for any 
(j(m) I in the domain D of both (f(x, m) If, n)x and 
({l(m) - {l(n»(f(x, m)1 A If, n)x, we have 

iii (j(m) I (f(x, m) If, n)x>m 

= (j(m) I ({l(m) - {l(n»(f(x, m)1 A If, n)x>m. (2.66) 

A solution to (2.66) is 

(f(x, m)1 A If, n)", 

= ili({l(m) - {l(n»-l(f(x, m) If, n)",. (2.67) 

It is unique in the sense that if (k(m) I N)", is also a 
solution, 

(j(m) I [ili({l(m) - {l(n»-l(f(x, m) If, n)x 

- (k(m) I N)xl>m = 0 (2.68) 
for all (j(m) I in D. 

Thus we have solved for the "matrix elements" of 
A, that is, the linear functional on functions of m 
(f(x, m)1 A If, n)x' Note that no inherent restriction~ 
(such as being in S) have been placed on the functions 
of m and that m itself might even take on only discrete 
values. 

We consider one specific example. Assume that m 
is a continuous variable and that {l(m) takes on all 
values in a certain range. Then letting Ig(m» be the 
eigenket of B with eigenvalue m, Eq. (2.67) can be 
written, for m in this range, 

(g(x, m)1 A Ig, n)x = ili(m - n)-l(g(x, m) I g, n)x' 

(2.69) 
If, in addition, 

(m - n)-l(g(x, m) I g, n)x 

= I(m - n)-lJ(n - m», (2.70) 

we get from (2.52) that, for all (j(m) I with continuous 
first derivatives in a neighborhood of m = n, 

(j(m)1 (g(x, m) I A Ig, n)x)m 

= ili(j(m)1 (m - n)-lJ(n - m»m 

= iii ~ Ij*(n». (2.71) 
dn 

The unique solution to (2.71) is 

(g(x, m)1 A Ig, n)x = iii ~ IJ(n - m». (2.72) 
dm 

Canonically conjugate operators playa fundamental 
role in this development of quantum mechanics. In 
the following section we show how, given two canoni­
cally conjugate operators ij and p (not necessarily 
space and momentum), one can find the canonical 
conjugate of any function of these operators if the 
canonical conjugate exists and is "expandable," that 
is, can be written in the form 

00 

. L aiAipi (aii = const, all i,j). 
J=-oo 

E. Representable Operators 

Consider an operator A, defined for all 11p) in its 
domain j)(A) by 

A 11p) = I <l>(1p». (2.73) 
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We can define a function (gl by demanding that, for 
every (fl in !D(9t(A», 

(g Itp) = (fl <P(tp» = (fl A Itp), (2.74) 

where :R(A) is the range of A. If such a (gl exists for 
each (fl, it is unique and we call A a "representable" 
operator. 

If A is a representable operator, we can define its 
action on every (fl in !D(:R(A» by 

(gl =: (fl A. (2.75) 

Similarly the complex conjugate of (2.74) implies 

A* If) = Ig). (2.76) 

It follows that we can define a representable operator 
A by specifying a linear mapping (also denoted by A) 
from !D(:R(A» into !D(!D(A». Such a specification of a 
representable operator A is called a "representation" 
of A. For example, (2.16) and (2.17) define x and p 
in terms of representations. 

3. EQUATIONS FOR THE CANONICAL CON­
JUGATE OF AN ARBITRARY OPERATOR 

The domain of tj-l consists of all those generalized 
functions whose domain includes (g/xl for all (gl in 
S*. We define tj-l on this domain by tj-l If) = Ix-Y,), 
where 1.r1j) is defined by (g I x-1j) =: (.rIg If) for all 
gin !D(lx-1j». 

p-l is defined on all of 'UJ* by p-l If) = Ir1j), 
where Ir1j) is defined on all (gl such that 

(L'''",dyg(y)1 is In !D(I!» 

by 

(g I p-l!) =: G L"", dyg(y) If). 
Since if (gl E S* , 

(L: dyg(y)/ E S*, then !D(IP-Y»;2 S. 

It is easy to prove that Ip-1j) is linear. What is more, 
since, for any sequence of good functions {gn(Y)}, if 
{gn(Y)} converges to zero, 

converges to zero, then Ip-1j) is continuous. 
It follows from the above definitions that 

p-lp = #-1 = l, 
where 1 is the identity operator for all of 'UJ*. It also 
follows that 

X-IX = xx-l = l(X-l), 

where l(X-l) is the identity operator for !D(X-l). 

In the following the formulas are true, of course, 
only insofar as the functional acted upon is in the 
domain of the operators concerned. 

In a previous paper7 we have shown that if tj and p 
obey [ft, tj] = -iii, for any integers IX and fJ, positive 
or negative, 

[p«, tj/l] = (1.- <5«,0)(1 - <5/1,0) 

x !l!) CIXI + (m : 1)O( -IX») 

x (lfJl + (m : 1)O( -fJ») 

x (ili)m( -1 )O"(<<,/I)mm! qP-mp«-m, (3.1) 

where (~) is the binomial coefficient, a!/b! (a - b)! 

()(q) =: 0, for q < 0, 
=: I, for q ~ 0; 

a(lX, fJ) =: 1, when IX and fJ have the same sign, 
=: 0, when IX and fJ have different signs; 

O(IX, fJ) == the smaller of the two, if both IX and fJ are 
positive, 

=: the positive one, if IX and fJ are of different 
signs, 

=: + 00, if IX and fJ are both negative. 

It should be emphasized that (3.1) is an operator 
relationship and that there is no question of the 
convergence of the series on the right until the matrix 
elements of the operator have been formed. 

We can now attack the problem of finding the 
canonical conjugate of any given operator if it exists 
and is expandable. If p(tj, p) and C(tj, p) are operator 
functions of tj and p and if 

[p(tj, p), C(tj, p)] = -iii, (3.2) 

then p(tj, p) and C(q, p) are called "canonical con­
jugates." Consider a function p(tj, p) in the form 

'" '" 
I(tj I p) = L L akn(tpn· (3.3) 

k=-oo n=-co 

An operator function P of tj and p with the p's to the 
right of the q's in each term is said to be in "normal 
form" and will be written p(t} I p). 

We ask for the set of all canonically conjugate 
C(q, p) in the form 

co. 00 

C(q I p) = L L byiqypi. (3.4) 

Thus we require 
1'=-00 ;=-00 

, D. M. Rosenbaum, J. Math. Phys. 8, 1973 (1967). 
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This leads easily to 

ro 
'" (b b ) Ak[ An AY] A; 'Ii £.. akn y; - a y; kn q P ,q P = -I . (3.5) 

y,j,k,n=-oo 

Putting [pn, qY] into (3.5) from (3.1), we get 

ro 

! (1 - bn,o)(1 - by,o)(aknby; - ayjbkn) 
y,j,k,n=-oo 

x (l]:) enl + (m : l)O( -n)) e YI + (m : 1)8( -Y)) 

x (ili)m( _1),,(n,y)mm! qYH-mpHn-m = - iii. (3.6) 

This can be rewritten as 

ro ro 

! ! (1 - bn ,o)(1 - by,o) 
rz,p=-ro Y,n=-ro 

(l(n,y) 
X L !XP+m-y,nby,rz+m-n - ay,lZ+m-nbP+m-y,n 

m=l 

x e nl + (m : l)O( -n)) e YI + (m : 1)8( -Y)) 

x (ili)m(_l),,(n,y)mm! qPplZ = -iii. (3.7) 

Equating the coefficients of qPplZ on each side of 

(3.7), we get 
ro 

! (1 - bn ,o)(1 - by,o) 
Y,n=-oo 

(l(n,y) 
X ! (ap+m-y,nby,lZ+m-n - ay,lZ+m-nbP+m-y,n) 

m=l 

x (Inl + (m : l)O( -n)) e YI + (m : l)O( -Y)) 

x (ili)m( _l),,(n,y)mm! = - iMIZ,obp,o' (3.8) 

For a given set of coefficients akn , Eq. (3.8) deter­
mines the coefficients bi;' When an infinite homogene­
ous linear set of indicial equations determines an infinite 
set of two-indexed coefficients, as in (3.8), there are in 
general an infinite set of arbitrary constants un­
determined. The above procedure gives the most 
general canonical conjugate. 

In general, we insist that o(p I q) be Hermitian. 
This can always be done if P is Hermitian, since then 
the adjoint of (3.2) is 

[p, 0*] = -iii. (3.9) 

From (3.2) and (3.9) it follows that teo + 0*) is a 
Hermitian operator which is canonically conjugate to 
F. We wish to have this operator in normal form, 
however. From (3.4), we have 

= ~ b*{l + (1 - 15 )(1 - b. )u~i>(l _ 15 ')(1 _ 15 .)(Im + yl + (m - 1)O(-m - y)) 
£. "/1 y,-1 3,-1 £.., m,-y m,-} 

"I,j=-oo m=l m 

x em + jl + (m: l)O(-m - j))OIi)m(_l)"(m+Y.m+i>m!}qyp;, (3.10) 

where 
v(y,j) == 00, if Y z 0 and j Z 0, 

== -Y - I, if Y ~ -2 and j Z 0, 

== -j-I, if YZO and j~ -2, 

== the smaller of (-Y - I) and (-j - 1), if Y ~ -2 and j ~ -2. 

In the next two sections we discuss the time operator, the canonical conjugate of the Hamiltonian. 

4. CLASSICAL CANONICAL TIME 

We write the Poisson bracket of two variables A 
and B as {A, B}. If q and p are canonically conjugate 
variables, then 

The change in any U(q,p) under an infinitesimal 
canonical transformation generated by T is, for 
infinitesimal E, 

{q,p} = 1. (4.1) 

For a given Hamiltonian H(q,p), we search for 
T(q,p), such that 

{T, H} = 1. (4.2) 

oU = E{U, T}. 

For E = -dE, U = H, we get 

bH= dE, 

and integrating we get 

H= Ho +E. 

(4.3) 

(4.4) 

(4.5) 
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Thus T(q, p) is the generator of energy transformations 
in just the same way that H(q, p) is the generator of 
the system's motion in time. Just as quantities whose 
Poisson bracket with H vanishes are constant in time, 
quantities whose Poisson bracket with T vanishes are 
constant under changes in energy. 

From (4.3) we also find 
aT 

op = dE{p, T} = dE -, (4.6) oq 

oq = dE{q, T} = -dE aT. (4.7) 
op 

A. The Free Particle 

For a free particle, (4.2) is just 

changes p just enough to keep (4.16) true. From (4.12) 
and (4.7), 

oq = dE(mq/(p2) - d!/dp). (4.17) 

Ifwe choosef(p) as in (4.11), (4.17) integrates to give 

q = qo(p - Po)/Po' (4.18) 

B. The Harmonic Oscillator 

We will not go through the derivation of the anal­
ogous results for the harmonic oscillator, but simply 
state them. For w = (kim)!, V = tkq2, K = (p2/2m), 

T = (llw) tan-1 (VIK)t, (4.19) 

P = Po(E/Eo)!; q = qo(E/Eo)t. (4.20) 

Once again, since Eo = (pU2m) + !kq~, 
oT J!.. = 1, 
oq m 

(4.8) E = (p2(2m) + ikq2. 

which gives 
T(q,p) = (m!p)q + !(P) (4.9) 

where !(P) is an arbitrary function of p. This can be 
written 

q = (p!m)T - p!(p)fm. (4.10) 

If, for some constant q(O), we pick 

!(P) = -(mjp)q(O), 

then (4.10) becomes 

q = (p/m)T + q(O). 

(4.11) 

(4.12) 

Thus one of the possible canonically conjugate 
T(q,p) is just t(q,p), the inverted solution to the 
dynamical equations. This is true for any Hamiltonian 
since, T(q,p) not being an explicit function of time, 

dT aT 
- = {T, H} + - = 1. 
dt at (4.13) 

Thus T can differ from I(q,p) at most by a constant. 
Finding T(q,p) for an H(q,p) is, in effect, a solution 
of the dynamical equations of motion for the system 
represented by that H(q,p) and can be used as a 
method for solving such equations. 

From (4.9) and (4.6), 

op = dE(mfp), 
or 

_1 J. P
2d(p2) = fE dE. 

2m 1>o~ JEo 
If p~/(2m) = Eo, then (4.15) gives 

E = p2/(2m). 

(4.14) 

(4.15) 

(4.16) 

Thus, if T generates a change E in the energy, it 

Note that T is just the dynamical time t and that time 
is cyclic; i.e., unless one can count cycles, only the 
phase is meaningful. 

These classical results constitute the boundary 
values for the corresponding quantum-mechanical 
problems via the correspondence principle. 

S. QUANTUM-MECHANICAL TIME OPERATOR 

We define the time operator t by 

[b, tl = -in. (S.l) 

t is a function of ij and p and never depends explicitly 
on time unless b does. It follows from (5.1) and the 
Heisenberg equations of motion that if t is considered 
as a Heisenberg operator to and does not depend 
explicitly on time, then 

dto = l. 
dt 

(5.2) 

If (5.n and (5.2) are true for the Heisenberg 
operator ~o, they an~ als~ true for the Schrodinger 
operator T == exp (iHt/n)To exp (-ibt/Ii) , assuming 
that it exists. 

The eigenvalue t of t is just the parameter time 
which appears in the Hilbert-space formulation of 
quantum mechanics. If we measure the energy of a 
particle exactly, we force it into an energy eigenstate 
whose eigenvalue is the measured energy; if we measure 
when a particle experiences an event, we force it into 
a time eigenstate whose eigenvalue is the measured 
time. 

A Now we consider some specific t's. For any given 
H, Eq. (3.8) can be explicitly solved for t just by 
methodically solving the equations. 
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A. The Free Particle 

In order to illustrate the method of solving (3.8) 
we derive the solution for the free particle in detail. 
For the free particle f1 = p2f2m, and the coefficients 
ak. in (3.3) are 

ake = (2m)-1 bk ,obe,2' 

Equation (3.8) then becomes 

00 d2,0 , (2) ,I (1 - b;,o) I (jn,i-pbi,a+n-2 
'=-00 n=l n 

X (Iii + (n: 1)O(-i))(ilit (_1),,"(2'ilnn l 

(5.3) 

= - 2ilimba.,obp,o' (5.4) 

Splitting the sum over i into three pieces, we get 

i {, I bi,n+pbi ,a+n-2 (2) (ili)nn 1 (n - 1 - i) 
n=l '=-00 n n 

+ ,1 b;,n+pbi,a+n_2(2) (i) ( - ili)nn l} - 2ilibp,ob1,a_l 
,=2 n n 

= -2miMa,obp,o' (5.5) 
Recall that 

O(x) = 1, x ~ 0, 

= 0, x < O. 

Then (5.5) becomes 

(5.6) 

I 0(-1 - n - (3)b n+p,n+a-2 (ili)nn 1 2 { (2)(-1-fJ) 
n=l n n 

+ O(n + (3 - 2)bn+p,n+a-2(~) (~ ~ fJ)(-ilitnl} 

- 2ilib{J,ob1,a-l = -2ilimba,ob{J,o' (5.7) 

Doing out the sum over n, we get 

«(3 + l)b{J+l,a-l(O«(3 - 1) + O( -fJ - 2» 
- [H(3 + 1)«(3 + 2)]ilibP+2,a(O«(3) + 0(-(3 - 3» 

+ b{J,ob1,a-l = mba,ob{J,o' (5.8) 

Equation (5.8) can be written as 

(fJ + 1)bp+1,a_l - [t(fJ + 1)«(3 + 2)](ili)bP+2,a 

Equation (5.11) and (5.12) together lead immediately 
to 

bp,a = 0 «(3 < 0). (5.13) 

The determining set of Eqs. (5.10)-(5.12) leaves the 
bo.a's and bl.a's arbitrary but gives, through (5.10) and 
(5.12), the bp,a's (fJ ~ 2) in terms of these. Thus we 
get 

b, k = - - (blk+1- J - mbk ,'-2) (j > 2). (5.14) (
2 )J-l 1 . . 

" iii j l' ,-

Thus the time operator for a free particle has the form 

t = k=~oo {bO,k + b1,kg 

00 ( 2 )1-1 
1 } + I ~ -:-, (b1,k+l-i - mbk,i-2)(j1 pk, 

;=2 -1" J. 
(5.15)1 

where the bois and b1.k'S are arbitrary. Since the 
coefficients of gi for j ~ 2 depend explicitly on inverse 
powers of Ii, we cannot pass to the classical limit by 
letting Ii -+ 0 unless these coefficients are all zero. This 
can be done by setting 

b1,{J = mbp,_l' (5.16) 

for all fJ. This gives 
00 

t = ! bO,kpk + mqp-l. (5.17) 
k=-oo 

As q and p commute classically, the different possible 
forms in which an operator A(p, g) can be put using 
the commutation rules give different classical limits. 
We call the form trA(g I p) + A(P I g)] the "mani­
festly Hermitian form" of A(P, g). We now make the 
rule that an operator must be put in this form before 
the classical limit is taken. Thus putting t in this 
form we get [the bO,k here are different from those in 
(5.17)], 

00 

t = ! bO,kpk + !m(qp-l + p-Iq). (5.18) 
k=-oo 

Then for t to approach the classical I as Ii -+ 0, we 
must have 

(5.19) 

The choice fJ = 0 gives 
= mba,obp,o' (5.9) where qo is an arbitrary constant. Then in the classical 

limit we get 

b2,a = (ili)-I(b1,a_l - mba.o). (5.10) 

The choice (3 = -1 gives nothing and (3 = - 2 gives 

b-1,a = O. (5.11) 
Lastly, we get 

bP+1a+1 = (~)_1_bpl% «(3 ¥= 1,0, -1). (5.12) 
, iii (3 + 1 ' 

t = -mqop-I + mqp-l. (5.20) 

Inverting (5.20) we get 

q = qo + vI. (5.21) 

It is often convenient to set all the bo.k = 0 and 
consider t as just 

t = !m(gp-l + p-Ig). (5.22) 
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Note that the domain of the T given in (5.22) is all such that 
ofW*. 

The eigenkets of T cannot be expressed as func- If we define 
tionals on functions of x. The eigenkets of Tare 
functionals on functions of space-time, the eigenket 
with eigenvalue to being 1t5(to - t). 

[H, T] = -in. 

-in 
G=:2; K=:mk, 

then (5.24) becomes 
B. The Harmonic Oscillator 

~ [' T] + -.L U;2 T]~ = 2G. 
2m q, 2m 1.1' , 

(5.24) 

(5.25) 

(5.26) As in the classical harmonic-oscillator example, we 
do not go through the derivation, but merely display 
a result. For reasons of space and because a following 
paper is planned giving the complete time operator 
for the harmonic oscillator and some of its uses, we 
give here only a particular solution for the time 
operator. To this must be added the most general 
operator function which commutes with the Hamil­
tonian. The constants must then be fixed so that t 
approaches the classical T as n -+ O. 

Let R(x) be the largest integer which is less than or 
equal to x. Then b«.p can be written in the form 

m B[(<l-2)/4] K n 

bl% p = - - I (2 1) C« nt5p <l-2-4n' (5.27) , (J..! n=O G a- n- , , 

This gives 

We display a T of the form 
00 m B[(<<-2)/4] K n 

T = - '" - '" C ,« -«-2-4n /::2 rx! ~o G(I%-2n-l) <l,nq P . (5.28) 

(5.23) Consider K/2m[q2, T]: 

K 1 00 1 B[(<<-2)/4] K(n+1) 
_ [,2 T]~ - - '" _ '" C '«r ~«-2-4n -2] 
2m q, - 2/::2 rx! {::o G(<l-2n-l) <l,nq 1.1' ,q. (5.29) 

But 

L(<<-2-4n,2) ( 2 4) ( 2 ) 
[ '1%-2-4n '2] = (1 _ t5 ) '" rx - - n (_ 2G)m ,-2-m -1%-2-4n-m p , q 1%,4nH ~ m. q p , 

m=1 m m 
(5.30) 

where L(x, y) is equal to x or y, whichever is least. Thus 

K ~ 00 2 B[(<<-3)/4] K(n+1) 
- [-2 T] - _ '" - '" C t5 -«+1 
2 

q , - ~ , ~ G(<<-2n-2) I%,n <l,4n+3q 
m 1%=2 rx. n=O 

1 00 1 B[(<<-4)/4] K(n+l) 2 ( 2 4n) ( 2) + _ '" _ '" C '" rx - - (-2G)mm! -«+2-m'«-2-4n-m 
2 ~ , ~ G(<<-2n-l) «,n ~ q p 

«=2 rx. n=O m=1 m m 

00 2 K(n+1) 00 2 B[(<<-4)/4] K(n+1) - I -- C q4(n+l) - I - I (rx 2 4n)C -«+I-«-3-4n 
- - n=O (4n + 3)! G(2n+1) 4n+3,n «=2 rx! n=O G(<<-2n-2) - - «,nq P 

00 2 B[(<<-4)/4] K(n+1) 
+ I - I (rx - 2 - 4n)(rx - 3 - 4n)C q«p«-4(n+l). 

«=2 rx! n=O G(<<-2n-3) «,n 

By changing the summation indices in (5.31), we can write it in the form 

~ [-2 T] __ ~ 2 ~ C -4. 
2m q, - .~ (4z - 1)! G(2z-1) 4z-1,z-lq 

_ I 2 B[('1
1
)/4] K

n 
( 4 + l)C -1% '«-4n 

«=3 (rx _ 1)! n=1 G(<<-2n-l) rx - n «-I,n-lq P 

"" 2 B (<</4) K n 
+ I - I (<<-2n-l) (rx - 4n + 2)(rx - 4n + 1)C«,n_lQ«p«-4n 

«=2 rx! n=1 G 
00 2 B(<</4) K n 

= I - I (<<-2n-l) (rx - 4n + 2)(rx - 4n + 1)CI%,n_lq«p«-4n 
«=2 rxl 11=1 G 

00 2 B(<</4) K n 
'" '" (4 + 1)C ,« '«-4n - ~ ( 1)' ~ G(I%-2n-l) rx - n «-I,n-lq P . 

«=3 rx - . n=1 

(5.31) 

(5.32) 



                                                                                                                                    

1140 DAVID M. ROSENBAUM 

Consider Ij(2m)[p2, t]: 

1 2 ~ 1 co 1 B[(a-2)/4] K n -2 -a -a-2-4n 

2
- [p , T] = - -2 2 I" 2 G(a-2n-1) Ca.n[p , q ]p • 

m a=2 IX. n=O 

(5.33) 

But 

(5.34) 

Thus 

1 co 2 B[(a-2)/4] K n 
_ [-2 t] = _ "" "" C -(a-I) -a-4n-1 

2 p, k ( 1)' k G(a-2n-2) a.nq p m a=2 IX - . n=O 

00 2 B([a-2)/4] K n C '(a-2) -(a-4n-2) 

+ a~2 (IX - 2)! n~o G(a-2n-3) rz,nq p 
(5.35) 

00 2 B[(a-1)/4] K n co 2 B(a/4) K n 
__ "" _ "" C -a-a-4n + "" _ "" C -a-a-4n 
- k , ~ G(a-2n-I) a+1.nq P ~, ~ G(a-2n-1) ~+2.nq P . 

a=1 IX. n-O rz-o IX. n-O 

(5.36) 

Thus 
00 2 B(a/4) Kn co 2B [(a-I)/4] K n 

[H t] - "" - "" C -a -rz-4n _ "" _ "" C 'a -a-4n , - a-=O IX! n-=O G(rz-2n-1) a+2.nq P ':=1 IX ! n-=O G(a-2n-1) a+1.nq P 

(5.37) 

If we set Cn .O = 1 for all n, the IX = 0 term gives 2G and the IX = 1, 2, and 3 terms equal zero. The n = 0 
term equals zero for all IX and (5.37) becomes 

for n < IXj4, and for n = IXj4 we get 

(5.39) 

Since q and p are operators, the coefficient of qapa-4n must vanish identically for all choices of IX and n. This 
is true if Crz •n satisfies 

for(IX-2)j4~n~ 1,IX~2; 

Ca •O = 1, for IX> 2; Ca,n = 0, for n ~ (IX - 1)/4. 

Ca•n = 0, for IX < 2 or n < O. 

It can be seen by direct substitution that (5.40) is satisfied if (5.41) is true and if.(n ~ 1): 

,,-2n-3 

C".n = I (IX - 4n - 2 - S)[(IX - 4n - 1 - S)Ca-3-s.n-l - (IX - 3 - s)Ca-4-s.n-1]' 
s=-1 

(5.42) is automatically true because of the form we have chosen for brz ,1) , Eq. (5.27). 
Directions for writing down the Ca,n explicitly are given in the Appendix. 

(5.40) 

(5.41) 

(5.42) 

(5.43) 
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6. THE SCATTERING TIME-DELAY OPERATOR 

In recent years there has been an interest in the 
delay, whether positive or negative, in the motion 
of a scattered particle due to its interaction with the 
scattering center.8- 10 Smithll showed that the average 
delay times are given by the eigenvalues of an operator 
Q. Lippmann observed that Q could be written in the 
form 

Q = -sfs*, (6.1) 

where S is the S matrix and f is an operator whose 
form in the energy representation is 

f = -ili%E. (6.2) 

Recently Lippm.ann12 has given an explicit form for 
f while pointing out that f has no eigenfunctions in 
Hilbert space. Lippmann's f is the three-dimensional 
form of the free-particle time operator written in 
spherical polar coordinates. The result (6.2) is far 
more general than this, however, since (6.2) is an 
appropriate form for fin the case of any Hamiltonian 
with continuous energy eigenvalues. 

7. RELATIVISTIC QUANTUM MECHANICS 

The real significance of super Hilbert space lies in 
relativistic quantum mechanics. Since a future paper 
is planned on this subject, we mention only a few 
points here. 

A 4-operator, which transforms under the Lorentz 
transformation like a Lorentz 4-vector, is called a 
"Lorentz 4-operator." Two Lorentz 4-operators fjll 
and Av which satisfy 

[fjll, Av] = -iMe, (7.1) 

where o~ is the Kronecker delta, are called "canonical 
conjugates." If an operator has a canonical conjugate, 
we call it a "canonical" operator. A Hermitian 
canonical Lorentz 4-operator is called a "4-observ­
able." Each of the four components of a 4-observable 
is called an "observable." 

Consider the 4-observable {jIl == (X/e, y/e, 2/e, f), 
defined by the representation (fl qv = (qJI, where 
the Minkowski metric implied has the signature 
(1,1,1, -1). The most general representation of a 
4-operator pll which satisfies 

(7.2) 
15 

(fl pll == (-ilio!/oqll + AIl!I, (7.3) 

8 D. Bohm, Quantum Theory (Prentice-Hall, Inc., Englewood 
Cliffs, N.J., 1951), pp. 257-261. 

• L. Eisenbud, dissertation, Princeton University, 1948. 
10 E. P. Wigner, Phys. Rev. 98, 145 (1955). 
11 F. T. Smith, Phys. Rev. 118, 349 (1960). 
12 B. A. Lippmann, Phys. Rev. lSI, 1023 (1966). 

where All is any 4-observable, defined formally by the 
representation (fl All == (All! I , which commutes with 
qv' The representation of pll implies that for any IVi) 
in :D(ftll), 

pll I Vi) = (- ili%qll + All) I Vi)· (7.4) 

This is a generalized covariant Schrodinger equation. 
Thus the SchrOdinger equation is just a restatement of 
the commutation relations and, as such, is not just a 
nonrelativistic approximation, but is always true. 
We can write (7.4) in operator form as 

(7.5) 

In addition to the commutation relations, we must 
have an invariant equation of motion which specifies 
the system about which we are talking. The simplest 
such equation which leads to nontrivial results is 

yllpll + mel = 0, (7.6) 

where the me is introduced to make y dimensionless 
11 

and y 11 is a numerical Hermitian Lorentz 4-vector. 
If we take Yll as the Dirac matrices, then (7.5) and 
(7.6) give the Dirac equation. If we choose the 
equation 

pllpil + m2c41 = 0, (7.7) 

we get the Klein-Gordon equation. 
If [All, %qv] ¥- ° for all fl and P, or if the invariant 

equation specifying the specific system involves both 
pll and qll, the four components of fill do not commute. 
By their definition, however, the four components of 
qll always commute. The nonre1ativistic f found in 
Sec. 5 does not commute with x because the initial 
function space is formed of functions of only space 
variables. 

8. NORMS AND THE SPECTRAL THEOREM 

It is not possible to introduce a norm in 'ill as a 
whole and it follows that there is no spectral theorem 
or resolution of the identity in 'ill as a whole. It is 
possible to introduce a norm in certain subspaces of 
'ill, however. For instance, a subspace J of 'ill can be 
put into one-to-one correspondence with the space I 
of all functions whose absolute square is integrable on 
any bounded region and which are bounded by some 
polynomial for sufficiently large x through the relation 

(F I g) == L: dxe-axg(x)!*(x), (8.1) 

for any IX> 0, (gl E I, IE I, (FI E J. We then can 
define the IX norm of <PI by 

II(Fllla == L: dxe-ax 1!(xW = (F I f). (8.2) 
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Note that one can introduce a norm in any self­
compatible subspace by letting II (Fill = «F If)!. A 
measure space can be constructed on 'ill as follows. 
Let 

G(Al' A2) == {(fl: Al < l<flg)1 S; A2} (8.3) 

for alllg) in S, such that I(g I g)1 = 1. Then the set of 
all G(Al' 42) plus the empty set is a semiring. The set 
of all finite unions of the G(AI' A2) is the minimal ring 
over this semiring. The union of all the semirings is 
'ill. Since 'ill belongs to the minimal ring [being G(O, 
(0)]' the minimal ring is a minimal algebra. Since the 
algebra contains the intersection of any number of its 
members, it is a Borel algebra and, in fact, it is the 
minimal Borel algebra over the semiring. Now we can 
introduce a measure p. on the semiring by 

One spectral measure in 'ill is to let the spectral 
measure of a set M be its characteristic function. 

Since a spectral measure can be found for 'ill as a 
whole, a spectral theorem can be proved in any self­
compatible subspace of 'ill. 

Since the whole spectrum of the usual operators 
used in quantum mechanics appear as eigenvalues with 
associated eigenkets in super Hilbert space, it is 
reasonable to speculate that it is the eigenvalues of an 
operator which represent the expected values of the 
associated dynamic variable rather than the entire 
spectrum, as in a Hilbert space. 

9. THE UNCERTAINTY PRINCIPLE 

Let :T be a self-compatible subspace of 'ill and let 
(<1>1 E:T. Let A and B be canonically conjugate 
Hermitian operators upon :T. Let (<I> I <1» == II<I>il2, 
for all (<1>1 in :T. Then, following von Neumann,13 

21m (<1>1 AB 1<1» = -i«<I>1 AB 1<1» - (<1>1 BA 1<1») 

= -i(<I>1 AB - BA 1<1» = /i 111<1»112. 

(9.1) 

Then, by the Schwarz inequality, 

111<1»11 2 = (211i) 1m (<1>1 AB 1<1» S; (2//i) 1(<1>1 AB 1<1»1 

S; (211i) 11.1 1<1»11 liB 1<1»11. (9.2) 

We can rewrite (9.2) as 

11.1 1<1»11 liB 1<1»11 > ~ . 
111<1»11 2 

- 2 
(9.3) 

13 J. von Neumann. Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, N.J .• 1955), p. 
234. 

We define A, ii, aA, and aB by 

A == (<1>1 A 1<1», ii == (<1>1 B 1<1», 
aA == II(A - Ai) 1<1»11 , 

II 1<1»11 
aB == II(B - iii) 1<1»11 . 

111<1»11 
(9.4) 

Since (A - Ai) and (B - iii) have the properties as­
sumed above for A and B, respectively, (9.3) holds for 
them as well and we have 

(9.5) 

Now consider a sequence of kets {I<I>;)} in:T, each 
satisfying the above, which converge to 1<1». If the 
limits exist, we can define aA and aB by 

Since (9.5) is true for allj, 

aAaB = lim aAj lim aBk = lim aAjaB j ~ /i12. 
;-+00 k-+oo ;-+00 

(9.7) 

We call M and aB the uncertainty in state 1<1» of A 
and B, respectively. 

Thus every pair of Hermitian canonically conjugate 
operators A and B upon a self-compatible subspace of 
'ill obeys an uncertainty principle with regard to kets in 
that space and kets which are limits of sequences of 
kets in that space, such that M and aB exist. 

10. CONCLUSION 

In addition to combining free- and bound-state 
problems into a natural whole and allowing the 
existence of a time operator which will be useful in its 
own right, super Hilbert space allows relativistic 
quantum mechanics to be based on a simple, natural, 
four-dimensional commutation relation. It may be 
that this basis and the representation of states by 
functionals rather than functions will contribute to the 
solution of some of the problems of relativistic quan­
tum mechanics. 
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APPENDIX: DIRECTIONS FOR WRITING 
DOWN C",n 

Ca,n can now be written in terms of the symbols R 
and F, which do not commute, as 

C a.n = -2[R(R + F)n-I]a.n, for n > 0, 

= 1, for n = 0, (AI) 

where the subscripts IX, n refer to the values to be used 
in the rules below. Thus for n > 0, Ca •n has 2(n-l) 

terms, each of which has 2n symbols. Consider a term 
with N R R's and N F F's. We define Ai as follows: 

Ai == 0, for i = 0, 

for the first R, 

-2[2(n - 1 - t) + 3] 
,,-2n-3-r-s 

X I [IX - 4n - 1 + At - U; + s)J (A7) 
;r'=;r-l' 

for succeeding R's, and 

(IX - 4n - 1 + At - (j; + s» 
X (IX - 4n - 2 + At - (ji + s» (A8) 

for each F. If we define jr == j; + s + 1, the directions 
become 

a-2n-4 

~ (IX - 4n - jl - 1) (A9) 
il~S-l 

for the first R, 

-2[2(n - (t + 1» + 3] 
,,-2n-3-r 

X I (IX - 4n - 1 + At - jr) (AI0) 
ir=ir-l 

== A i- I + 1, for an R symbol, 

== Ai- I + 2, for an F symbol. (A2) for succeeding R's, and 

Going from left to right in order, for the first R 
symbol we write 

<x-2n-3 

~ (IX - 4n - 2 - jl) 
;'~-I 

and for each succeeding R symbol 

<x-2n-2-r 

(A3) 

-2[2(n - t) + 3] I (IX - 4n - 2 + At - jr)' 
;,.=11"-1 

(A4) 

where the index r refers to I plus the number of R's to 
the left of the R under consideration and the index t 
refers to 1 plus the number of factors (R or F) to the 
left of the R under consideration. For example, con­
sider 

r = 1 23 4 
RFRRFR 

t = 123456. 

F or each F we write 

(IX - 4n - 2 - j; + At)(IX - 4n - 3 - j; + At), 

(A5) 

where i has the same value as that of the r in the first 
R to the left and t refers to the position of F, as above. 

We now show that these directions specify a C ".n 
which satisfies (5.41) and (5.43). Consider C,,-3-s.n-l' 

The directions are to write 

a-2n-4-s 

~ [IX - 4n - 1 - (j~ + s)] 
jl'~-l 

(A6) 

(IX - 4n - 1 + At - ji)(IX - 4n - 2 + At - ji) 

(All) 

for each F. We can get the directions for C,,-4-s,n-l by 
letting IX -- IX - 1 in the directions for C a-3-s.n-l . If at 
the same time we let jr -- jr - 1, we get as the direc­
tions for C,,-4-s.n-l 

a-2n-4 

~ (IX - 4n - jl - 1) (AI2) 
il=8 

for the first R, 

-2[2(n - (t + 1» + 3] 
,,-2n-2-(r+l) 

X I (IX - 4n - 1 + At - jr) (A 13) 
ir=ir_l 

for succeeding R's, and 

(IX - 4n - 1 + At - ji)(IX - 4n - 2 + At - j;) 

(AI4) 

for each F. Thus the only difference between 
C a-3--s.n-l and C,,-4-s.n-l is that the lower bound 
on the summation for the first R is (s - 1) for 
C a-3-s.n-l and (s) for C,,-4-s,n-l' Thus 

(oc - 4n - 1 - s)C"-3-s,n_l - (IX - 3 - S)Ca-4-s.n_l 

= (-4n + 2)C,,-4-s.n_l 

+ (IX - 4n - 1 - S)(IX - 4n - S)D,,-3-s.n_l, 

(AIS) 

where D,,-3-s,n-l has n - 2 factors and is the same as 
C,,-3-s.n-2, except that the first summation is dropped 
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and the lower limit on the second summation is j2 = 
S - 1. Thus 

a-2n-3 
Ca,n = L (ex - 4n - 2 - s)( -4n + 2)Ca- H ,n-l 

s~-l 

a-2n-3 
+ L (ex - 4n - s)(ex - 4n - I - s) 

s~-l 

x (ex - 4n - 2 - s)Da- 3- s,n-I' (AI6) 

Consider the first term. Let us rename the indices r, 
t, and jr in the rules for Ca-4.-s.n-l, so that t' == t + 1, 
r' == r + 1, and U;)' = j;-I ' and at the same time let 
s == ji' Then the first two factors in the first term in 
(AI6) become 

[~~~3(ex - 4n - 2 - jl)] 
X [(-4n + 2)a:~~4(ex - 4n - I - jl)} (AI?) 

which is just R2, and the directions for the rest of the 
terms are just (we have dropped the primes on r, t, 
andjr): 

-2[2(n - t) + 3] 
a-2n-2-4 

X L (ex - 4n - I + AU-I) - jr) (AI8) 
ir=ir-t 

for each succeeding R (r > 2) and 

(ex - 4n - I - ji + Au-o) 

X (ex - 4n - 2 -); + A(t_I» (AI9) 

for each succeeding F (t > 2). Since the order of the 
factors after R2 is the same as the order of the factors 
in Ca-4-s.n-l after R [the only difference being that 
what was the jth factor in Ca- H .n- 1 is the U + l)th 
factor in the first term on the right-hand side of (AI6)] 
it follows that if we want the directions for deter­
mining Ai to apply to the first term on the right-hand 
side of (AI6), where the index refers to the position of 
a factor in that term, we must let A t_ 1 ~ (At - 1) in 
(AI8) and (AI9). Having made this change in (AI8) 
and (AI9), we see that the rules for the first term on the 
right-hand side of (AI6) are the same as those for 
R2(R + F):-::. Similarly, one can show that the 
second term on the right-hand side of (AI6) is 
RF(R + F):-:;,2. Thus 

C = R2(R + F)n-2 + RF(R + F)n-2 a.,n Il,n (l,n 

= R(R + F)(R + F)n-2 = R(R + F)n-l !l,n a,n 
a-2n-3 

= L (ex - 4n - 2 - s)[(ex - 4n - I - s) 
s~-l 

X Ca- 3- s,n-l - (ex - 3 - s)Ca- 4- s,n_l]' (A20) 
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Exact Robertson-Walker Cosmological Solutions Containing 
Relativistic Fluids * 

J. PETER V AJK 

Lawrence Radiation Laboratory, University of California, Livermore, California 

(Received 21 September 1968) 

A new derivation of the Robertson-Walker metrics is presented which elucidates the relationship 
between these spatially homogeneous and isotropic models and certain spatially homogeneous but 
anisotropic models ("three-cylinder universes"). The evolutionary equations for Robertson-Walker 
mode~s containing as many.as four distinct noninteracting relativistic fluids (each obeying a gamma-law 
equatIOn of state) are examined, and 25 exact closed-form solutions of this type are presented explicitly. 

INTRODUCTION 

Recently, several writers have discussed cosmo­
logical models of the Robertson-Walker type con­
taining both radiation and incoherent dust (pressureless 
matter).I-S Under the assumption that the radiation 
and the matter do not interact, exact solutions may he 
derived:l-7 which evolve, during early epochs, very 
much like exact solutions containing only radiation,s.s 
and during late epochs, like the exact solutions of 
Friedmann9 which contain only incoherent dust. 

In early stages of the expansion of the fireball when 
temperatures are in the range of 1012-1 013

0 K or higher, 
because of the strong interactions of the mesons (1T, 
K, etc.) which appear at these temperatures, the 
equation of state of the matter (assuming thermo­
dynamic equilibrium) is not well known, but in any 
case, the pressure due to matter is not negligible. 
Accordingly, even if one ignores the actual interactions 
which do in fact occur between the radiation and the 
matter, it seems desirable to obtain still more exact 
solutions of the Robertson-Walker type corresponding 
to various equations of state for the matter. Eighteen 
exact solutions which have not (to my knowledge) 
previously appeared in the literature are presented 
here, and for the sake of completeness, seven· pre­
viously published solutions are also given, using the 
same notation throughout. 

As an alternative to the homogeneous and isotropic 
Robertson-Walker cosmological models, there has 
been some interest recently in homogeneous but 

• W?r~ performed under the auspices of the U.S. Atomic Energy 
CommISSIOn. 

1 C. B. G. McIntOSh, Nature 215,36 (1967). 
• C. B. G. McIntosh, Monthly Notices Roy. Astron. Soc. 138, 

423 (l968). 
a K. C. Jacobs, Nature 215, 1156 (1967). 
• J. M. Cohen. Nature 216, 249 (1967). 
• J. P. Vajk, thesis, Princeton University, Princeton, N.J., 1968. 
6 A. D. Chernin, Astron. Zh. 42, 1124 (1965) [Sov. Astron.-AI 

9, 871 (1966)]. 
? R. A. Alpher and R. C. Hermann, Phys. Rev. 75, 1089 ([949). 
• R. C. Tolman, Phys. Rev. 37,1639 (1931); 38,1758 (J931). 
• A. Friedmann, Z. Physik 10, 377 (1922). 

anisotropic models which are spaHally closed in two 
directions but open in the third direction (three­
cylinder cosmologies). Such models have been derived 
by Thorne,lo Kantowski and Sachs,n and Dorosh­
kevich.12 A new derivation of the Robertson-Walker 
metrics is presented here which elucidates the rela­
tionship between the Robertson-Walker models and 
the three-cylinder models. 

Derivation of the Robertson-Walker Metrics 

We assume that the space-time manifold is spheri­
cally symmetric and endowed with a sufficiently 
differentiable metric tensor field. We further assume 
that the matter in the space-time moves on a differ­
entiable congruence of geodesic world-lines. It is then 
possibleS to construct orthogonal comoving coordi­
nates (T, X' 0, cp) on coordinate patches on the 
space-time. In terms of these coordinates, the metric 
has the formS 

ds2 = dT2 - peT, X) dx2 - S2(T, X) d02 , (la) 

d02 = d02 + sin2 0 dcp2, (lb) 

where f and S are differentiable scalar fields defined on 
each coordinate patch. 

The scalar field S may be interpreted as the intrinsic 
radius of curvature of the two-sphere defined by the 
locus of points T = constant, X = constant. It is 
important to note that OilS (the four-gradient of S) 
need not, a priori, be a spacelike vector: it may be 
spacelike, null, or timelike, or it may vanish. Only if 
OilS is spacelike is it pos~jble to write the metric in the 
usual form 

ds2 = A2(t, r) dt2 - B2(t, r) dr2 - r2 dfP, 

A2 > 0, B2> 0. 

(For a complete discussion of the role of 0/lS in the 

10 K. S. Thorne, doctoral thesis, Princeton University, Princeton, 
N.J., 1965; Astrophys. J. 148, 51 (1967). 

11 R. Kantowski and R. K. Sachs, J. Math. Phys. 7, 443 (1966). 
12 A. G. Doroshkevich, Astrofizikll 1, 225 (1965). 
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theory of spherically symmetric space-times, see 
Ref. 5.) 

The components of the Einstein tensor when re­
ferred to the orthonormal tetrad of one-forms 

w'l. = SeT, X) dO, 

WI = I(T, X) dx, w3 = SeT, X) sin () d1>, (2) 

may then be found very efficiently by Misner's pre­
scription for computing curvature.13 The Einstein field 
equations without cosmological constant are then 

., 1 G = ~(~ + 2-) 
00 S S f 

1 (S')2 S (S)2 I 
Gll = J2 S - 2 S - S - S2 = KP" 

G22 = ;2(~' - j ~') -7 -~ -7 ~ = KPa, 

(5) 

(6) 

where Jl is the proper mass-energy density of matter, 
Pr is the component of stress in the radial direction 
(that is, in the X direction), Pa is the component of 
stress in the angular directions (that is, in any direction 
tangent to a two-sphere T = constant, X = constant), 
and K = 87TG/C4 is the relativistic gravitational con­
stant. Differentiation with respect to T is denoted by 
a dot; with respect to X, by a prime. The conservation 
laws 

TIl";v = 0 

will also be useful in the discussion below; these are 

. (I 8) 1 s 
I/. + I/. - + 2- + P - + 2p - = 0 
r r f S r J as ' 

s' 
P; + 2 - (Pr - Pa) = O. 

S 

(7) 

(8) 

If we now assume that the distribution of matter on 
each space like hypersurface T = constant is homo­
geneous, that is, 

Jl = Jl(T), Pr = Pr(T), Pa = PaCT), (9) 

then P; vanishes identically. The conservation law (8) 
may then be satisfied by any of the following choices: 

(A) S'::;f 0 and Pr = Pa = p(T) , (10) 

(B) s' = 0 and Pr::;f Pa' (11) 

(C) S' = 0 and Pr = Pa = p(T). {l2) 

13 c. W. Misner, J. Math. Phys. 4, 924 (1966). 

The choices (B) and (C) lead to space-times whose 
spacelike hypersurfaces T = constant are three­
cylinders, i.e., to spherically symmetric space-times 
which are spatially homogeneous but anisotropic. 
Such space-times have been discovered by Thorne,lo 
Kantowski and Sachs,n and Doroshkevich.12 

Our present interest, however, is only the choice (A). 
Substituting (10) into the conservation law (7), we see 
that the expression [<II!) + 2(8/S)] must be inde­
pendent of X. Thus we conclude that 

I(T, X)S2(T, X) = g(T)h(X), (13) 

where g and h are as yet undetermined functions. Now 
the field equation (4) may be integrated once to give 

S'(T, X) = m(x)f(T, X), (14) 

where m is an undetermined function. 
What forms must I and S have in order to satisfy 

both (13) and (14)? Solving (13) for S, differentiating 
once with respect to X, and using (14), we obtain the 
relation 

~ [heX)]! = [h(x)]!f'(T, X) + m(x)[f\T, X)]!. (15) 
dX J(T, X) geT, X) 

For each value of X, this relation must hold identi­
cally for all values of T. This is possible only iff' /fand 
f3/g are both independent of T, that is, if I can be 
decomposed into a product of a function of T with a 
function of x: 

I(T, X) = A(T)B(X), where A3(T) = geT). (16) 

We then find from (14) that S is also decomposable: 

S(TI X) = A(r)M(x)· (17) 

It is apparent from (16) and the form of the metric 
(1) that there is no loss of generality in setting B(X) = 
1 ; this corresponds merely to a suitable choice of the 
coordinate x. Thus the metric becomes 

ds2 = dT2 - A2(T)[dX2 + M2(X) dQ2]. (I 8) 

We now find that the field equations (3), (5), and (6) 
can be written in the form 

2- + - - - = K' = 3A2 - KA 2
1J. 

M" (M')2 1 
M M M2 r' 

(19) 

(M')2 1 A2 .. 2 - - - = K = + 2AA + KA P 
M M2 ' 

(20) 
M" - = K = A2 + 2AA' + KA2p 
M ' 

(21) 

where we have introduced separation constants K and 
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K', since the left-hand member of each equation is a 
function only of X and the right-hand member, a 
function only of 7". We find at once that 

K' = 3K. (22) 

We may now integrate the left-hand member of 
(21). Depending on the value of K, we obtain three 
different results: 

M(X) = D sin [(IKl)ix + IX], K < 0, 

= D'(X + (3), K = 0, 

= E exp [-(K)iX] + E' exp [(K)~X], K> 0, 

(23) 

where D, D', IX, (3, E, and E' are constants of inte­
gration. 

Substituting these expressions into the remaining 
field equations (19) and (20), we find 

D = (IKI)-i, K < 0, 

D' = 1, K=O, (24) 

EE' = -1/(4K), K> 0. 

Since IX, (3, and E/E' merely fix the origin of the co­
ordinate X and thus have no intrinsic geometrical 
significance, we pick 

IX = (3 = 0, 

E= -E'. (25) 

We next note that multiplying K by any positive 
number A has the effect of changing the scale of X by a 
factor of (A)~. Thus there is no loss of generality in 
considering only K = -J, 0, or + 1. We thus obtain 
the three Robertson-Walker metrics 

in the three Eqs. (7), (19), and (20); because of the 
Bianchi identities, however, only two of these equ.a­
tions are independent. Thus, in order to obtain unique 
solutions, it is necessary to provide additional in­
formation about these functions. This information may 
be given most conveniently in the form of an equation 
of state of the matter in the space-time, that is, in the 
form of a functional relation between I-' and p. 
[Alternatively, of course, one can simply specify an 
ad hoc explicit form for A(r) and calculate I-' and p 
from the field equations (19) and (20), as McIntosh 
has done. l There is no guarantee, however, that this 
procedure will result in a physically reasonable form 
of matter.] 

With the aid of (10) and (17), the conservation law 
(7) may now be written as 

it + 3(1-' + p)A/A = 0. (27) 

Given the equation of state relating p and 1-', this 
equation may be integrated (at least in principle) to 
give I-' as a function of A. The field equation (19) may 
then be solved to obtain A as an implicit function of r: 

(28) 

where ro is a constant of integration. 

Conformal Coordinates 

As we shall see in the discussion below, there are 
several cases of interest in which the solution (28) is an 
elliptic function. In some of these cases, a coordinate 
transformation which we now describe permits us to 
reduce the relevant quadratures to elementary func-

ds2 = dr2 - A2(r)[dx2 + sin2 X dQ2], K = -I, tions. 
(26a) If we define a new timelike coordinate by 

K=O, 

(26b) 

ds2 = dr2 - A2(7") [dX2 + sinh2 X dQ2], K = +1. 
(26c) 

These describe space-times which are spatially homo­
geneous and isotropic. The spacelike hypersurfaces 
r = constant are spaces of constant curvature, respec­
tively positive, zero, and negative. The space-times 
described by the above forms will be referred to in the 
rest of the discussion as closed, jiat, and hyperbolic 
Robertson-Walker space-times, respectively. 

The function A(T), which describes the evolution of 
the geometry, and the functions I-'(r) and peT), which 
describe the behavior of the matter in these space­
times, remain to be found. These functions appear 

d1p = dr/A ( r) (29) 

and then express A as a function of 1p instead of r, 
we can write the metrics (26) in the forms 

ds2 = A2(1p)[d1p2 - dX2 - sin2 X dQ2], K = -1, 

(30a) 

ds2 = A2('!p)[d1p2 - dX2 - X2 dQ2], K = 0, 

(30b) 

ds2 = A2(1p)[d1p2 - dX2 - sinh2 X dQ2], K = +1. 
(30c) 

Since the metric forms on any two neighborhoods 
of a (1p, X) coordinate plane in such a spacetime are 
conformally related, we call the coordinates 1p and X 
conformal coordinates. 
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We now find that A(T) may be given in parametric 
form, with 1p as parameter. The expression (28) is then 
replaced by 

f dA -1p 
A[K + !KA 2,u(A)]! - , 

T - TO = f A(1p)d1p. 

(31a) 

(31b) 

The expression (31 b), of course, is essentially identical 
to (28); in some cases, however, (3la) may be 
expressed in terms of elementary functions, while 
(31 b) is an elliptic function. In such cases, an exact, 
closed-form solution may be given for the metric (30). 

Relativistic Fluids 

We now consider the equation of state 

p = (y - l),u, ,u + p = y,u, 1 ~ y ~ 2, (32) 

where y is a constant. (The limits on y result from the 
requirements that the stresses be pressures rather than 
tensions and that the speed of sound in the fluid be less 
than the speed of light in vacuo.) For y = 1, the 
pressure vanishes, so that the equation of state is that 
of incoherent dust. For y = t, the equation of state 
is that of a photon gas or a gas of noninteracting 
relativistic particles. 

For this equation of state, the conservation law (27) 
may be integrated to give 

(33) 

where B is a constant of integration. We now see that, 
for K;i: 0, (28) may be readily expressed in terms of 
elementary functions or elliptic integrals only if 
(3y - 2) is an integer (see, e.g., §2.29 of Ref. 14), that 
is, if 

y = n/3, n = 3,4, 5, 6, (34) 

while (31a) may be expressed in closed form for 
arbitrary K and arbitrary y.15 Exact closed-form 
solutions for these cases are presented explicitly in 
Appendix A. 

Consider now a fluid composed of two or more 
components, each characterized by a different value of 
y. If the various components are strictly noninter­
acting, then the conservation law applies to each 
component separately, and each component then 
satisfies (33). The total proper mass-energy density of 

14 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, 
and Products (Academic Press Inc., New York, 1965). 

,. The author is grateful to Lane P. Hughston for pointing out 
that the solutions (Al3) and CAI5) can be expressed in closed form 
(private communication, 1968). 

the fluid is then 

Bl B2 
,u = A311(T) + A312(T) + ... , (35) 

where Yi characterizes the equation of state of the ith 
component of the fluid, and the total pressure is 

The solutions (28) or (3la) may be readily expressed 
in terms of elementary functions or elliptic functions 
if there are no more than four components and if each 
of the Yi satisfies the condition (34). Closed-form exact 
solutions for two- and three-component cases are 
presented in Appendices Band C, respectively. Four­
component cases for which the Yi satisfy (34) can He 
expressed only in terms of elliptic functions for general 
values of the 'integration constants Bi . 

APPENDIX A: SINGLE-COMPONENT 
RELATIVISTIC FLUID CASES 

Exact closed-form solutions for Robertson-Walker 
cosmological models containing a single-component 
relativistic fluid with equation of state 

p = (y - l),u 

are presented below. For convenience, we have given 
solutions for Y = 1 (dust), Y = t (radiation), Y = -}, 
and Y = 2 in addition to the solutions for arbitrary 
y. A key to the solutions is given in Table I. 

The behavior of the fluid (not given explicitly 
below) is in all cases related to the metric function 
A(T) or A(1p) by 

,u = B/A3
1, p = (y - l)B/A3

1, 

and the abbreviation 

a == KB/6 

is used throughout. 

TABLE I. Summary of solutions. 

y = I Y = t y = t y = 2 Arbitrary y 
p = 0 p = pJ3 P = 21'/3 P = I' P = (y - 1)1' 

K=-I 
K=O 
K=+I 

(AI)& 
(A2)& 
(A3)& 

(A4)b 
(A5)e 
(A6)e 

a Friedmann (see Ref. 9). 
b Tolman (see Ref. 8). 

(A7)e 
(A8)e 
(A9)" 

C Vajk (see Ref. 5). 
d U. Gerlach, unpublished work, 1965. 
e Hughston (see Ref. 15). 

(AIO)d 
(AI!)e 
(AI2)C 

(AI3)e 
(AI4)C 
(AI5)e 
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Solutions 

y = 1, K = -1: 

2a sin-1 [A(T)/2a]f - [2aA(T) - A2(T)]! = T - TO. 

(Ala) 

A( 1p) = a(1 - cos 1p) = 2a sin2 J!. , 
2 

T - TO = a( 1p - sin 1p) = 2a (J! - sin J!. cos J!.). 
2 2 2 

(Alb) 

y = 1, K = 0: 

A(T) = C;)\T - TO)f. (A2a) 

a 2 A(1p)=-1p, 
2 

a 3 
T - TO = -1p. 

6 

y=1,K=+I: 

(A2b) 

[A2(T) + 2aA(T)]! - 2a sinh-1 [AH/2a]! = T - TO. 

(A3a) 

A( 1p) = a(cosh 1p - 1) = 2a sinh21:' , 
2 

T - TO = a( sinh 1p - 1p) = 2a (sinh J!. cosh J!. - J!.). 
2 2 2 

y = t, K = -1: 

A(T) = [2a - (T - TO)2]!. 

A(1p) = C2a)! sin 1p, 

T - TO = (2a)! cos 1p. 
-----

y = t, K = 0: 

A(T) = (8a)t(T - TO)!. 

A(1p) = (2a)!1p, 

T - TO = (a/2)!1p2. 
-----

y = t, K = +1: 

A(T) = [(T - TO)2 - 2a]!. 

A(lJi) = (2a)! sinh lJi, 

T - TO = (2a)! cosh lJi. 
-----

y = t, K = -1: 
A(lJi) = (2a)![sin tlJi]f, 

T - TO = f A(lJi) dlJi· 

(A3b) 

(A4a) 

(A4b) 

(A5a) 

(A5b) 

(A6a) 

(A6b) 

(A7) 

(A8a) 

(A8b) 

y=t,K=+l: 

A(1p) = (2a)![sinh i1p]f, 

T - TO = f A(1p) d1p. (A9) 

-----
y = 2, K = -1: 

A(1p) = (2a)!(sin 21p)!, 

T - TO = J A(1p) d1p. (AlO) 

-----
y = 2, K = 0: 

ACT) = (18a)iCT - TO)!. (All a) 

A(1p) = (8a)t1p!, 

T - TO = i(8a)t1p!. (A 11 b) 

y = 2, K = +1, 

A(1p) = (2a)!(sinh 21p)!, 

T - TO =J A(1p) d1p. (AI2) 

Arbitrary y, K = -1: 

[ C - 2) r/(3
Y
-2) A(1p) = (2a)1/(3y-2) sin T 1p , 

T - TO = J A(1p) d1p. (A 13) 

Arbitrary y, K = 0: 
A(T) = (}y2a)1/(3Y)(T - TO)2/(3y). (AI4a) 

A(lJi) = [(3y - 2)2a/2]1/(3 y-2)lJi2/(3Y-2), 

T - TO = .! [(3y - 2)2a/2]1/(3y-2)lJi3Y/(3y-2). 
3y 

(AI4b) 

Arbitrary y, K = + 1: 

A(lJi) = (2a)1/(3Y-2)[sinh cy;- 2) lJi T/(3
Y
-2), 

T - TO =f A(lJi) d1p. (A15) 
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APPENDIX B: TWO-COMPONENT 
RELATIV~STIC FLUID CASES 

Nine exact closed-form solutions for Robertson­
Walker space-times containing two non interacting 
relativistic fluids with equations of state 

PI = (Yl - l),ul, P2 = (Y2 - 1),u2 

are given below for Yl = 1, t, or!, and Y2 = t,!, or 
2, with Yl < Y2' In another nine such cases, neither 
(28) nor (3Ia) can be readily reduced to closed form: 
both expressions give elliptic functions. A summary 
of these two-component fluid cases is presented in 
Table II. 

TABLE II. Summary of solutions. 

I's = t I's = t I's = 2 
ps = Ps/3 ps = 2p2/3 ps = Ps 

1'1 = 1 (Bl)a-d Elliptic Elliptic 
PI = 0 (B2)c-e Elliptic (B4) 

(B3)c.d Elliptic Elliptic 

1'1 = t Elliptic (B6) 

PI = Pl/3 (BS) (B7) 
Elliptic (BS) 

1'1 = t Elliptic 
PI = 2Pl/3 (B9) 

Elliptic 

a G. Lemaltre, Am. Soc. Sci. Bruxelles 47A. 49 (1927). 
b Alpher and Hermann (see Ref. 7). 
c Chemin (see Ref. 6). 
d Cohen (see Ref. 4). 
e Jacobs (see Ref. 3). 

K 

-1 
0 

+1 

-1 
0 

+1 

-1 
0 

+1 

The total mass-energy density and total pressure in 
these solutions are given by 

,u = (B1/A
3
Yl) + (B2/A

3
Y2), 

P = (Yl - 1)(Bl/A3y1) + (Y2 - 1)(B2/A
3

yS), 

respectively, with Y1 < Y2' The abbreviations 

a == KB1/6, b == B2/B1 , 

are used below. Note that, for b = 0 (i.e., for B2 = 0), 
these solutions reduce to the corresponding single­
component solution in which Y = Yl' 

Chernin (see Ref. 6) has remarked that the param­
etrized solutions (BIb), (B2b) , and (B3b) for uni­
verses containing both dust and radiation may be 
written, respectively, as sums of the parametrized 
solutions (Alb), (A2b) , and (A3b) for universes 
containing only dust and the parametrized solutions 
(A4b) , (ASb), and (A6b), respectively, for universes 
containing only radiation. Hughston16 has obtained a 
number of solutions (not given below) for two­
component fluids by generalizing this "superposition" 
property. 

16 L. P. Hughston (submitted to Astrophys. J.). 

Solutions 

Y1 = 1, Y2 = t, K = -1: 

. -1 A(T) - a asm 
(a(a + 2b)]l 

- (2ab + 2aA(T) - A2(T)]l = T - TO' (Bla) 

A(",,) = a + (a(a + 2b)]l sin "", 

T - TO = a"" - (a(a + 2b)]l cos "". (BIb) 

Y1 = 1, Y2 = t, K = 0: 

(A(T) - 2b](A(T) + b]l = C;)\T - TO)' (B2a) 

A(",,) = ~ ",,2 - b, 
2 ' 

a 3 b 
T - TO = - "" - "". 

6 

Yl = 1, Y2 = t, K = + 1: 

(A2(T) + 2aA(T) + 2ab]l 

. -1 A(T) + a 
-asmh l=T-TO' 

(a(a + 2b)] 

A( "") = (a(a + 2b )]l sinh"" - a, 

T - TO = (a(a + 2b)]l cosh"" - a"". 

Y1 = 1, Y2 = 2, K = 0: 

[
9a J1 A(T) = '2 (T - TO)2 - b . 

Y1 = t, Y2 = !, K = 0: 

[ A(T) - 3;]rA2(T) + bACT)]l 

(B2b) 

(B3a) 

(B3b) 

(B4) 

+ 3:2 

log ((A2(T) + bA(T)]l + A(T) + ~) 
= (8a)l(T - TO)' (BSa) 

(A2( "") + bAt ",,)]l 

- - cos = a Oil b h-1 [2A( "1') + bJ (2)l 
2 b .,., 

T - TO = f A(",,) d"". (BSb) 

Y1 = t, Y2 = 2, K = -1: 

A(1p) = (a + rata + 2b)]i sin 2",,)i, 

T - TO = f A( "1') d"". (B6) 
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Yl = t, Y2 = 2, K = 0: 

A(T)[A2(T) + b]t - b log (A(T) + [A2(T) + b]t) 

A(1p) = [2a1p2 - b]t, 

T - TO = J!. [2a1p2 - b]t 
2 

= (Sa)t(T - TO)' (B7a) 

- b(~)~ log [(2a)t1p + (2a1p2 - b)t]. 

(B7b) 

Yl = t, Y2 = 2, K = + 1 : 
A(1p) = ([a(a + 2b)]t sinh 21p - a)t, 

T - TO = I A( 1p) d1p. (BS) 

Yl = t, Y2 = 2, K = 0: 
[A(T) - b]t[3A2(T) - 4bA(T) + Sb2

] 

= 15(~t(T - TO)' (B9a) 

(
9 )! [A( 1p) + b ]t[A( 1p) - 2b] = ; 1p, 

T - TO =I A(1p)d1p. (B9b) 

APPENDIX C: THREE-COMPONENT 
RELATIVISTIC FLUID CASES 

For Robertson-Walker cosmological models con­
taining three noninteracting relativistic fluids each 

obeying an equation of state 

Pi = (Yi - 1)#i' i = 1,2,3, 

where Yi = 1, t,!, or 2, the solution (28) or (31a) may 
be readily reduced to closed form in only one case, 
namely, Yl = t, Y2 =!, Y3 = 2, K = O. The total 
mass-energy density and total pressure are then 

= Bl + B2 + B3 
# A4 AS A6 ' 

= l!..!. + 2B2 + B3 
P 3A4 3As A6 ' 

respectively. The functions A(T) and A(1p) are given 
below, using the abbreviations 

a == KB1/6, b == B2/B1 , e == B3/B1 • 

Note that for e = 0 this solution reduces.to the two­
component solution (B5). 

Yl = t, Y2 = !, Y3 = 2, K = 0: 

[A(T) - 3:]rA2(T) + bA(T) + e]t + [3:2 

- e] 

x log ([A
2
(T) + bA(T) + elt + A(T) + ~) 

= (Sa)l(T - TO)' (CIa) 

[A2(1p) + bA(1p) + e]t 

b h-12A(1p) + b (2)t - - cos = a 1p 
2 [b 2 -4e]t ' 

T - TO = I A(1p)d1p. (Clb) 
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Equations of the de Broglie Wavefield in the Case of 
Spherical Symmetry 
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Two methods of integrating the equations of the de Broglie wavefield are introduced. The first inte­
grating method does not seem to be as suitable for the domain of the microphysics as the second one. 
According to the second integrating method, the equations of the de Broglie wavefield are solved for the 
metric with spherical symmetry. In this case, the equations of the de Broglie wavefield admit of a solution 
which includes both Schrodinger and Hamilton-Jacobi methods of description as particular cases. 

I. INTRODUCTION 

In Riemannian space-time, one can consider the 
relativistic action function as a system of wave 3-
surfaces of a progressive wave called in this paper the 
de Broglie wave. The first fundamental form of space­
time represents the elementary wave 3-surfaces of such 
de Broglie waves and the relativistic action function, 
regarded as the wave 3-surface, is an envelope of these 
elementary wave 3-surfaces. The propagation of 
de Broglie waves is given by the elementary 3-surfaces 
which, however, are determined by the fundamental 
metric tensor. Thus, the fundamental metric tensor of 
space-time determines the propagation of de Broglie 
waves. Such a description of propagation is given by 
the homogeneous canonical system and corresponds to 
the original formulation of Huygens principle.1 

However, one can attempt to describe the prop­
agation of de Broglie waves in the spirit of Kirchhoff 
formulation of Huygens principle, i.e., using partial 
differential equations. This possibility of description 
seems to be given by the equations of de Broglie wave­
field (briefly, field equations).2 The field equations 
describe the same wavefield as the homogeneous 
canonical system, but from a higher analytical point 
of view than the homogeneous canonical system does. 
By an analysis of the continuation properties of the 
field equations, we get the equation 

(gab - xaxb) dxa dxb = 0, 

which corresponds to the local light cone and where 
the xa == dxajds are components of the unit normal 
4-vector to the wave 3-surface of the de Broglie wave. 

The field equations bear no obvious resemblance 
to any equations of quantum mechanics. But we will 
establish a close connection by considering, in Sec. Y, 
the de Broglie wavefield with spherical symmetry. 
Mathematically, this case is comparatively simple and 

1 J. Kulhanek, Nuovo Cimento 38, 1178 (1965). 
2 J. Kulhanek, Nuovo Cimento Supp!. 4, 172 (1966). 

the treatment is completely satisfactory. Thus, if we 
have confidence in the practical validity of quantum 
mechanics, we are in a position to compare the field 
equations with physical reality. 

It is quite possible, however, that another case of 
symmetry (for example, axial symmetry) is more 
suitable than the case considered. 

II. FIELD EQUATIONS 

The field equations are2,3 

R~ - xaxkR~ = (Je2jh2)(O~ - xaxb), (1) 

where gab = gba' Je is the rest mass, h is Planck's 
constant, and xa are components of the unit normal 
4-vector to the wave 3-surface of the de 13roglie wave. 
The system (1) is not symmetric. It can be easily 
rewritten in a symmetric form. Contracting (1) we get 

R - xaxbRab = 3Je2j h2 . (2) 

Multiplying (1) by Xb we have 

(3) 

From (2) and (3) we obtain 

RabXb = xa(R - 3Je2/h2). (4) 

Applying (4) we can rewrite the Eqs. (1) as 

Rab - XaXb( R - 3 ~22) = ~22 (gab - XaXb) (5) 

and, hence, after simple rearrangement on the left­
and right-hand sides, we finally get 

Rav -~Rgab + ~22 gab = - (R - 4 ~:)(tgab - XaXb)' 

(6) 
The systems (5), (6), and (1) are equivalent. 

3 The Eqs. (I) are introduced in Ref. 2 with a minus sign on the 
right-hand side. In this case, however, the solution considered in this 
paper does not exist. Because of this, we will consider the system (I) 
with a plus sign on the right-hand side as basic form of equations of 
de Broglie wavefield. 

1152 
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On the left-hand side of (6), there is a well-known 
tensor whose covariant divergence vanishes. Thus, 
from (6) we have the four conservation equations 

Because 

gaOXaXb = 1 and hence xVxbla = 0, 

we find from (7) that 

Xl = _ 2' oR xa. 
/l 2 R _ 4JeP/ hll oxa 

Consequently, 

or 

o( - g)!(R - 4Je,2f h2)!xa = 0 

oxa 

(7) 

(8) 

(9) 

(to) 

[(R - 4Je2/h 2ixa]la = O. (11) 

Thus there is a simple integral theorem 

! €(N)(R - 4 Je:)!XaNa d3v = 0, (12) 
YVa 11 

with the integral taken over any closed 3-space, where 
N a is its unit normal and €(N) is the indicator4 of the 
vector Na• The symbol dav denotes an invariant 
element of 3-volume. The integral theorem (12) is an 
immediate consequence of (10). Substituting from 
(9) into (7), we get 

o ( Je
2)i x1.ial1 = (b! - Xlxu) ox lln R - 4 h2' (13) 

The conservation equations (7) are equivalent to Eqs. 
(11) and (13). Let us introduce the 4-vector Ca as 

Ca =jxa , where j= (R - 4Je2Ih2)~', (14) 

and the tensor5,6 Dab as 

o - oC b _ oCa (15) 
all - oxa ox" . 

Then we may rewrite (II) and (13) as 

(16) 

Thus, from (6) and (16) we may construct a system 
which is hyperbolic in the sense of Leray.?·8 

Equations (1), (5), and (6) do not contain sources; 
hence we are dealing with continuous and nondualistic 

4 For any vector va, the quadratic form gab vav, is positive, 
negative, or zero. If the value is not zero, we define the indicator of 
va, denoted by E( V), to be ± I so as to make €( V)g ab va V" > O. 

5 A. Lichnerowicz, Recent Development in General Relativity 
(Polish Scientific Publishers, Warsaw, 1962). 

• J. L. Synge, Proc. Math. Soc. (London) 43,376 (1937). 
7 J. Leray, Hyperbolic Differential Equations(Princeton University 

Press, Princeton, N.J., 1951). 
8 A. Lichnerowicz, Ann. Sci. Econ. Norm. Suppl. 8, 285 (1941). 

field theory. There are no reasons to distinguish 
between exterior and interior solutions of Eqs. (1), 
(5), or (6). 

III. FIRST INTEGRATING METHOD 

For any given set of four functions '~a(X<), suffi­
ciently smooth (for simplicity, let us suppose them to 
be of class C2), for which we assume that 

(17) 

where the gab are constructed from the gab in the usual 
manner, the system 

Je2 (4;1£2)(1 .. ) Rab - iRgab + h2 gab = - R - h22gab - XaXb 

(18) 

is a set of ten nonlinear second-order partial differ­
ential equations to be satisfied by the ten unknowns 
gab' The four conservation equations 

gjk[(R - 4Je2
/ h2)(iglk - x1x,J]lj= 0 (19) 

are consequences of (18) and imply no restriction on 
the chosen xa(x") , since they contain the unknowns 
gab' not only in the coefficients, but also in the deriv­
atives. Since the given xa(xk) do not uniquely deter­
mine the coordinate system, we have to add coordinate 
conditions. These are only 3 in number because of (17) 
which represents the fourth-coordinate condition. 

Example: Let us consider xa(xk
) given as (0, 0, 0, I). 

Then from (17) we obtain 

(20) 

Putting ga4 = 0 (ex: = 1, 2, 3), from (20) we get 
g44 = 1. Thus we may solve (I8), for example, in 
Gauss normal coordinates. 

IV. SECOND INTEGRATING METHOD 

The components of 4-vector xa and the rest mass Je 
are defined1 as 

• Pa w (ab )t 
Xa = (kl )t ' "'" = g PaPl1 , 

g PkPI 
(2]) 

where Pa are components of the 4-momentum. We 
may writel that 

= oW = W 
Pa oxa - ,a' (22) 

where W(Xk) is the covariant action function. The 
3-surfaces W = const are wave 3-surfaces of the 
de Broglie wave. Using (22) and (2I) we have 

x = U-:a = »-':a 
a (glkW W )! - Je 

,I ,k 

(23) 



                                                                                                                                    

1154 J. KULHANEK 

and 
Je2 = gab W.a W,b . 

is easy to verify without calculation on the basis of the 
(24) symmetry alone. Now let us put 

Substituting from (23) and (24) into (6), we get 

Je2 
Rab - tRgab + h2 gab 

= -(R - 4~2)(tgab - ~2 ~a~b)' (25) 

In (25) and (24) we have 1 + 10 = 11 equations to be 
satisfied by the following 11 unknowns: gab' W. On 
account of a well-known argument,9 we may consider 
four of the ten gab as arbitrarily given (sufficiently 
smooth) functions. Thus, within the condition of 
admissibiIity,lO we have liberty in the choice of co­
ordinates. 

V. SOLUTION FOR SPHERICAL SYMMETRY 

Spherical symmetry is interesting by virtue of its 
comparative simplicity and the physical problems 
associated with it. We will make our calculation for the 
form 

_dT2 = ea.(dxl)2 + eP[(dx2)2 + sin2 x2(dx3)2] _ eY(dx4)2, 

(26) 

where IX, p, yare three functions of (xl, X4)Y For the 
form (26) we have 

g"b = diag (ea., eP, efJ sin2 x2, -eY), (27) 

all other components vanishing and Je2 = -Je2,12 
where Je is the rest energy of the particle. Then from 
(24) and (25) we have 

and 
Je2 

Rkk - tRgkk - hi g,,/c 

= - ( R + 4 ~22) (igk,k + ~2 ~k~l} 

(29) 

In the Ricci tensor, a component vanishes if it has 
just one subscript 2 or one subscript 3, a fact which 

• D. Hilbert, Ges. Wiss. Gottingen Nachr. 18,395 (1915). 
10 We recall from Ref. II the assumed existence of admissible co­

ordinates in space-time, for which coordinates we have continuity 
of gab and gab,K across any 3-space~. If~ is in some sense a 3-space 
of discontinuity, the discontinuity can occur only in the second or 
higher derivatives of gab' provided the coordinates are admissible. 

11 J. L. Synge, Relativity: The General Theory (North-Holland 
Pub. Co., Amsterdam, 1960). 

12 When the signature of first metric form is +2, we putJe2 =_Je2 
and consider Je as the rest mass. When the signature is - 2 we put 
Je2 = Je2 and consider Je as the rest mass. 

(30) 

We can introduce coordinates Xl and X4 (isothermal 
coordinates )13 such that (26) becomes 

-dT2 = eU(dr2 - dt2) + 12(d{}2 + sin2 (}d1}) (31) 

where r = xl, {} = X2, 1> = x 3 , t = x4, and u is a 
function of r, t. By direct computation under the 
assumption that w'r =F 0 and w.t =F 0, the Eqs. (29) 
give two equations 

1 = Je2 /2 
h2 ' 

(32) 

From the first Eq. (32) we have 

12 = h2/Je2 , [I] = em, (33) 

and we identify I as Compton's wavelength. With /2 
obtained from the first equation (32), the second 
equation (32) gives 

a2
U a2u 2 - _ - = _ -eU 

ar2 at2 [2' 
(34) 

Let us remark that the surface of a 2-sphere (r = ro = 
const) is 41T/2 for the metrics (31), which is independent 
of ro. The space-time is a manifold of constant 
curvature R = -4Je21h2 = -4//2 and Eq. (7), there­
fore, holds identically. Equation (28) now gives 

The solution of (35) is 

W = vCr, t) + vI ( (}) + v2( 1» (36) 

and (35) with (36) gives 

_Je2 = e-U(v~r - V~t) + B2/12, (37) 

where B is a separation constant. The quantity V,t is 
total energy of the particle and v,r is its momentum. 
Hence, V~t > v~ and from (37) we see that 

_B2 - Je2/12 < O. 

In (37) and (34) we have two differential equations, 

2 u 
u,rr - U,tt = - fe, 2 2 B2 + Je2/2 u 

V r - V,t = - 12 e , 

(38) 

for two unknown functions u(r, t) and vCr, t). In 
order to solve Eqs. (38) we put 

x = (2)!r//, y = (2)!t/[ (39) 

13 W. B. Bonnor, Recent Development in General Relativity 
(Polish Scientific Publishers, Warsaw, 1962). 
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and 
x = ; +,u, y = ; - ,u. (40) 

Hence, 
; = !(x + y), ,u = !(x - y). (41) 

Using (39), (40), and (41), we may rewrite Eqs. (38) 
as 

U,~p. = -e", v;vp. = - t(B2 + Je212)e". (42) 

The general solution of the first of Eqs. (42) is given14 

as 
" 1'rp' e = -2 , 

(f + rp)2 
(43) 

whereja) and rp(,u) are arbitrary functions. It is easy 
to verify that we may rewrite (43) in the form 

e" = -2~ln(f+ rp)~ln(f+ rp). (44) 
a~ a,u 

Substituting Eq. (44) in the second of Eqs. (42), we 
have that 

v = (B2 + Je2[2)! In (j + rp) (45) 

is the solution of second equation (42). Further, Eq. 
(43) may be written in the form 

1 a2 
2 

e" = - (f + rp)2 a; a,u (f + rp) . (46) 

Now, if we put 

Owing to (52) and the second equation (42), we see 
that (51) holds identically. The significance of all this 
is that we have essentially two arbitrary functions 
U, v and Eqs. (42) or functions U,1jJ and the 
equations 

2" 0 Urr - Utt + 12 e = , 2 U 0 
1jJrr - 1jJtt + 12 e 1jJ = . (53) 

Now let us assume that the function u depends only 
on the variable r. Then from the first equation (53) 
we have 

d
2

u + ~ eU = 0 and hence 
dr2 [2 

du 2 t 
dr = ± I (C1 - eO.) , 

(54) 

where C1 is an integration constant. The solution of 
(54) is given as 

C1 = C2 > 0, e-" = C-2ch2C(r[-1 - C2), (55) 

where C2 is a second-integration constant. In this case 
we can assume the function 1jJ in the form 

1jJ = x(r)0(t). (56) 

From the second equation (53) we get 

x" + (k+2~22e")X=0, 0+k0=0, (57) 

1jJ = (j + rp)2, 

Eq. (46) then gives 

(47) where for [2 we use (33) and k is the constant of 
separation. The solution of the second equation (57) is 

1jJ,~I' + eU
1jJ = O. (48) 0 = a1 exp [( -k)!t] + a2 exp [- (-k)tt), (58) 

In the variables r, t we have (48) in the form 

1jJ,rr - 1jJ,tl + 2r2eu
1jJ = O. 

where aI' a2 are integration constants. Substituting 
(49) from (55) in the first equation (57), we get 

With the help of (45) and (47) we may express the 1jJ 

function by means ofthe action function v. We obtain 

1jJ = exp [2(B2 + Je2[2)-tV]. (50) 

Equation (49) is the SchrOdinger equation which 
corresponds to the Hamilton-Jacobi equation (37) 
and 1jJ is the wavefunction well known from quantum 
mechanics. Substituting from (50) into (48), we get 

2(B2 + Je2[2)-lVSVp. + eU + 2(B2 + Je2[2)-! 

X [(B2 + Je2[2)-!VSVp. - Vsp.] = O. (51) 

Because of (45) we may write 

exp [2(B2 + Je2[2)-tV] = j(;) + rp(,u) 

and hence 

(59) 

where E = kh2/2Je, Vo = JeC2, oc = CJe/h, and we 
put C2 = O. This equation is discussed in Ref. 15. The 
spectrum of positive eigenvalues of the energy E = 
kh2/2Je is continuous, while that of negative eigen­
values is discrete. The energy levels are determined15 

as 

E = - ~~T -(1 + 2n) + (1 + ~~o)tr, (60) 

where n takes positive integral values starting from 
zero. Substituting in (60) for Vo and oc, we get 

(61) 

(52) There is a finite number of levels determined by the 

14 A. R. Forsyth, A Treatise on Differential Equations (Dover 15 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Addi-
Publications, Inc., London, 1921), p. 555. son-Wesley Publ. Co., Inc., Reading, Mass., 1958), p. 69. 
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condition 

(62) 

In our case we have 

n < 1 (63) 

and, hence, n = O. From (61) we get 

rhus we have only one level which corresponds to 
number n = O. Substituting k from (64) in (58), we see 
that tp is not periodical in time. On the other hand, 

JOURNAL OF MATHEMATICAL PHYSICS 

however, for E > 0 and hence k > 0 the spectrum of 
E is continuous and tp is periodical in time. 

VI. CONCLUSION 

The solution of the field equations carried out in this 
paper seems to be strong support for the idea that the 
tp function of quantum mechanics is in the immediate 
connection with the metric field of space-time. 
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The change in the character of electromagnetic radiation in the presence of a nondispersive, electrically 
and magnetically uniaxially anisotropic medium moving uniformly in the direction of its axis of sym­
metry is investigated. Because of the existing symmetry, it is possible to obtain explicit time-dependent 
analytic solutions for a longitudinally-and a transversely-oriented magnetic dipole current distribution 
density using a spectral representation in the space-time Fourier domain. The supports of the resulting 
fields are found to be oblate spheroidal wave fronts which enclose the source point if v < VI, where v 
and VI signify respectively the speed of the medium and the phase speed of a wave, as measured by an ob­
server in the rest frame of the material, and move inside circular conical regions-a phenomenon known 
as the Cerenkov effect-for v > VI' 

1. INTRODUCTION 

A resurgence of interest in the subject of electro­
dynamics of uniformly moving media has been 
observed recently. The pioneering work of Minkow­
skj1 and Sommerfeld2 has been used to examine the 
problem of electromagnetic radiation in a homogene­
ous, isotropic, dispersive and nondispersive, bounded 
and unbounded medium for both nonrelativistic and 
relativistic velocities.3- 29 More recently, Tai30 in­
vestigated the first-order theory of the electrodynamics 
of moving anisotropic media, and Lee and L0 31 

formulated the problem of radiation in an anisotropic 
plasma moving along a static magnetic field. In the 
same vein, Chawla and Unz32 and McKenzie33 

constructed the basic equations for a moving aniso­
tropic plasma following the microscopic Lorentzian 
viewpoint. 

The analysis of electromagnetic radiation ansmg 
from elementary sources in the presence of a class of 
"generalized" media-materials "extended" by the 
addition of anisotropy and motion-is the objective of 
this exposition. The fundamental work of Minkowski 
is used throughout. According to this approach, the 
properties of the medium, which are specified via the 
constitutive relations in its rest frame, are assumed to 
be known a priori. The Lorentz transformations of the 
theory of special relativity are then applied to write 
relations valid in the laboratory frame with respect to 
which the material is moving with uniform, but other­
wise arbitrary, velocity. 

It is our specific intent in this paper to examine the 
modification of the character of radiation in the 
presence of a nondispersive, both electrically and 
magnetically uniaxially anisotropic medium moving 
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uniformly along its distinguished axis. By virtue of the 
existing symmetry with respect to this direction, 
explicit solutions are found for i!. longitudinally-and 
transversely-oriented magnetic dipole by utilizing a 
spectral representation in the space-time Fourier 
domain. 

2. THE MAXWELL-MINKOWSKI EQUATIONS 
FOR AN ANISOTROPIC MEDIUM 

Consider two inertial reference frames K and K' in 
relative motion. The primed coordinate system is at 
rest with respect to a homogeneous, nondispersive, 
time-invariant, anisotropic medium of infinite extent, 
moving with a uniform velocity v relative to K. 

In the laboratory frame the electromagnetic fields 
must satisfy Maxwell's curl equations 

v x E = -oB/ot - J m , 

VxH=oD/ot+Je , 

(2.la) 

(2.1 b) 

where Je and Jm are, respectively, the externally 
applied current distribution densities. 

In the light of the Lorentz covariance, Maxwell's 
equations must have the same form in all inertial 
frames of reference. To render this set of equations 
closed in K', we specify the following constitutive 

1 H. Minkowski, Nachr. Kg\. Ges. Wiss. Gottingen 1, 53 (1908). 
2 A. Sommerfeld, Electrodynamics (Academic Press Inc., New 

York, 1964), pp. 280-290. 
3 G. Marx, Acta Phys. Hung. 3, 75 (1953). 
• C. T. Tai, Proc. IEEE 52, 685 (1964). 
5 K. S. H. Lee and C. H. Papas, J. Math. Phys. 5, 1668 (1964). 
6 J. R. Collier and C. T. Tai, Trans. IEEE Antennas Propagation 

12, 375 (1964). 
7 P. Penfield, Jr., Proc. IEEE 52, 1361 (1964). 
8 H. G. Schopf, Ann. Physik 7, 41 (1964). 
9 C. T. Tai, Trans. IEEE Antennas Propagation 13, 322 (1965). 

10 R. T. Compton, Jr. and C. T. Tai, Trans. IEEE Antennas 
Propagation 13, 574 (1965). 

11 J. R. Collier and C. T. Tai, Trans. IEEE Microwave Theory 
Tech. 13,441 (1965). 

12 L. 1. Du, thesis, Ohio State University, 1965. 
13 C. T. Tai, App\. Opt. 4, 1347 (1965). 
14 C. Yeh, J. App\. Phys. 36, 3513 (1965). 
15 L. J. Du and R. T. Compton, Jr., Trans. IEEE Microwave 

Theory Tech. 14, 358 (1966). 
16 V. P. Pyati, thesis, University of Michigan, 1966. 
17 C. Yeh, J. App\. Phys. 37, 3079 (1966). 
18 R. T Compton, Jr., 1. Math. Phys. 7, 2145 (1966). 
19 I. M. Besieris, thesis, Case Institute of Technology, 1966. 
20 R. M. Kalafus, thesis, University of Michigan, 1966. 
21 I. M. Besieris, 1. Math. Phys. 8, 409 (1967). 
22 c. T. Tai, J. Math. Phys. 8, 646 (1967). 
23 I. M. Besieris and R. T. Compton, Jr., J. Math. Phys. 8, 2445 

(1967). 
24 V. P. Pyati, J. App\. Phys. 38, 652, 4372 (1967). 
25 C. S. Tsai and B. A. Auld, J. App\. Phys. 38, 2106 (1967). 
26 C. Yeh, J. App!. Phys. 38, 2871 (1967). 
27 Y. 1. Seto, Trans. IEEE Microwave Theory Tech. 15, 455 (1967). 
28 H. Grunberg and P. Daly, IEEE Trans. Microwave Theory 

Tech. 15, 636 (1967). 
29 H. Fujioka and N. Kumagai, Radio Sci. 2, 1449 (1967). 
30 C. T. Tai, Radio Sci. 69D, 407 (1965). 
31 S. W. Lee and Y. T. Lo, Radio Sci. 1, 313 (1966). 
32 B. R. Chawla and H. Unz, Proc. IEEE 54,1103 (1966). 
33 J. F. McKenzie, Proe. Phys. Soc. (London) 91,532,537 (1967). 

relations: 
D' = £'·E', 

B' = fJ.' • H'. 

(2.2a) 

(2.2b) 

The permittivity and permeability tensors are taken to 
be independent of the space coordinates and time. 

According to Minkowski's theory, Eqs. (2.2a) and 
(2.2b) suffice to determine the corresponding auxiliary 
relations for the un primed field quantities if the 
Lorentz relativistic transformations are known. 

If the coordinate frames K and K' are coincident at 
t = (', have the same orientation, and move with a 
uniform velocity v with respect to each other, the 
following expressions relate the primed with the un­
primed fields: 

where 

E' = v . E + yv . B, 

B' = v • B - (y/c2)v . E, 

D' = v • D + (y/c2)v • H, 

H' = v • H - yv • D, 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

v = yl + (1 - y)v-2vv; Y = (1 - !J2)-~, f3 = vjc. 

I is a unit dyadic or idemfactor, and the antisymmetric 
tensor v is defined so that v· F = v x F for an 
arbitrary vector F. 

Substituting Eqs. (2.3a)-(2.3d) into Eqs. (2.2a) and 
(2.2b), one obtains, after a series of rearrangements ,34 

where 

D = £·E + ;·H, 

B = ~·E + fJ.·H, 

£ = (v + y2£' . V . V-I. fJ.' . V)-I 

(2Aa) 

(2Ab) 

· [£' . v + (y2jc2)£' . V • V-I. v], (2.5a) 

fJ. = (v + y2fJ. . V . V-I. £' . V)-I 

· [fJ.' . v + (y2/C2)fJ.' . V . V-I. v], (2.5b) 

; = -(v + y2£' . V . V-I. !Jo' . V)-I 

· [(yjc2)v - y£' . v· V-I. fJ.' . v], (2.5c) 

~ = (v + y2!Jo' . V . V-I. £' . V)-I 

· [(y/c2)v - yfJ.' . v . V-I. £' . v). (2.5d) 

The expressions for D and B [cf. Eqs. (2Aa) and 
(2Ab)] are introduced next into the set of Maxwell's 
equations in K to obtain the "definite" form 

D, x E = -(ojot)p.. H - J"" 

Dg x H = (o!ot)e . E + J" 

(2.6a) 

(2.6b) 

where the symbols D" and D, represent the differential 
operators V - ;o!ot and V + r,%t, respectively. 
Here, ; and ~ are the axial vectors corresponding to 

34 H. Chen and D. K. Cheng, Proe. IEEE 54,62 (1966). 
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the antisymmetric tensors; and ~ given in Eqs. (2.5c) 
and (2.5d), respectively. These relations, commonly 
referred to as the Maxwell-Minkowski equations, will 
be specialized in the following section to the case of 
a uniaxially-anisotropic medium. 

3. SPECIALIZATION TO THE CASE OF A 
UNIAXIALLY ANISOTROPIC MEDIUM 

We assume here that the material is characterized 
by the constitutive relations (2.2a) and (2.2b), with the 
electric and magnetic permittivity tensors given as 

respectively, in the principal-axes coordinate system.3S 

This presupposes the fact that the matrix representa­
tions of the dyadic permittivities must be semisimple in 
the original coordinate system.36 

If the velocity of the medium is directed along the 
axis of symmetry, i.e., v = va., the constitutive 
relations in the K frame are found to be 

D = E • E + Sll X H, 

B = -Sll X E + "" . H, 

accompanied by the following definitions: 

E = al€~lt + €~a.a., 
"" = alft~lt + ft~a.a., 
a1 = (1 - f32)/{1 - n~f32), 

n1 = (€;ft;/€ofto)!, 

n f3(n~ - 1) 
~" - a 

1 - e(l _ n~f32) .' 

(3.1 a) 

(3.1 b) 

A special effort has been made to keep the notation as 
close as possible to that introduced earlier by other 
workers. 

On the basis of these assumptions, the Maxwell­
Minkowski set of Sec. 2 reduces now to the following 
simplified form: 

Dl X E = -(a/at)"". H - Jm , 

Dl X H = (a/at)E' E + Je • 

(3.2a) 

(3.2b) 

Dl designates the differential operator V - Sll(ajat). 

4. SIX-VECTOR FORMULATION: THE RADIA­
TION PROBLEM FOR 4l IN THE DUAL SPACE 

Define cI> as an ordered pair of the vectors E and 
H; similarly, define F as the ordered pair of the 

35 With €~ ¢ €~ and/or ,u~ ¢ ,u~, the medium is called uniaxially 
anisotropic. Often, the z' axis is referred to as the "distinguished" 
axis, or as the axis of symmetry of the material. 

38 M. C. Pease, III, Methods of Matrix Algebra (Academic Press 
Inc., New York, 1965), Chap. 5. 

forcing function vectors J. and Jm , viz., 

cz, = (<1>1' <1>2, ... , <l>e) = (E, H), 

F = (F1' F2 ,'" ,Fe) = (J., J m). 

(4.1a) 

(4.1 b) 

The Maxwell-Minkowski equations, as they appear in 
the previous section, are two separate three-vector 
systems for the electromagnetic field intensities E and 
H. With the above definitions of cI> and F, Eqs. (3.2a) 
and (3.2b) are converted into a single, six-vector 
system having the matrix representationS7 

where 

fO = [ =~~'+'~~J, ~ = [1"j"'~o~J, 
-a/az 

o 
a/ax 

(4.2) 

Operating with the fourfold space-time Fourier 
transform on the inhomogeneous equation (4.2) 
results in 

[Q(s) - iwCO]cz,(s, w) = -F(s, w), - - - - (4.3) 

from which 

~(s, w) = - [~(s) - iwfO]-l,!:(S, w). (4.4) 

The matrix ~(s) in the dual space is given by 

Q(s) = [.~ .. J"=~~J; - is i 0 [

0 -so s'll J 
S = s. 0 -s.,. 

-s'll S., 0 

Primarily because the velocity of the moving aniso­
tropic medium is chosen to be along the axis of 
symmetry (z axis), it is allowable to write 

Q(s) - iwfo = 3t(s') - iw§, (4.5) 

37 Our formulation of a specific problem has led us to a system 
of partial differential equations [cf. Eqs. (4.2)], calIed the normal (or 
canonical) form, which has several distinct advantages. It is not only 
compact and suggestive, but, more importantly, it enables one to 
include in a single general discussion a large number of physically 
important problems, many of the similarities among which would 
be, undoubtedly, not revealed without resorting to such a systematic 
and unifying approach. Furthermore, most results of partial 
differential equations are stated in terms of the normal form. 
Specifically, statements concerning existence and uniqueness of 
solutions, and classification as to hyperbolicity, ellipticity, etc., or 
linearity, quasilinearity, etc., are made more conveniently in terms of 
the normal form. 
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in which 

[
0 i-iS'] 

~(s') = -;;5;--:'------0=--, 

S' = [~' - . 
-s; 

, , ] -so s.u, 

o -s"" 
s~ 0 

and s' = s",a", + SVay + (s. + wQ1)a •. With this trans­
formation, the analysis of the radiation problem, 
at least in the dual domain, will be parallel to that for 
a stationary medium having the same characteristic 
properties. It must be emphasized, however, that this 
analogy is due to the particular choice of the direction 
of the velocity along the z axis. If, in contrast, the 
material moves in any other direction, the matrices 
E and p in the K inertial frame are no longer uniaxial. 
- With the modification shown in Eq. (4.5), one 
obtains 

cJl(s, w) = - [~(s') - iW~]-1~(S, w). (4.6) 

The inverse of the matrix within the square brackets 
will be represented spectrally by means of a complete 
set of eigenvectors of ~(s') with ~ in the role of a weight 
matrix operator. In order to accomplish this task it is 
mandatory that the precise nature of the eigenvalues 
and eigenvectors associated with this characteristic 
problem be investigated first. 

5. PROPERTIES OF THE EIGENVALUES AND 
EIGENVECTORS 

Consider the expression 

~CPi=KiECP, i=1,2,···,6. (5.1) 

Since both ~ and I!:.. are assumed to be real symmetric, 
~t = ~. However, for real s, ;R,t = -~, i.e., ~ is an 
anti-Hermitian matrix. 

Theorem: The eigenvalues Ki of ~ are imaginary. 

Theorem: The eigenvectors of (5.1) are ~ orthogonal, 
viz. ,38-40 

(5.2) 

The proofs of both theorems are easily obtainable. 
Equation (5.1) may be now recast in the form 

(5.3) 

38 The matrix t; in (cp" t;cp,) is nonsingular and Hermitian, but not 
necessarily positive dcli.ni~We specify that (CPi' t;cp,) "'" 0 in order 
to avoid the introduction of the concept of lin "improper inner 
product." For further clarification, see Refs. 39 and 40. 

89 M. C. Pease, Ref. 36, pp. 215-238. 
.0 W. C. Meacham, Phys. Fluids 4, 1517 (1961). 

Alternatively, 
(5.4) 

is a statement of the eigenvalue problem adjoint to 
(5.3); namely, 

.A(,t'-\li = K:~i' (5.5) 

since .A(,t = _~E-1 and K· = -K*. Hence, '-\Ii = - - ' , 
Ecp;. One may, therefore, substitute for (5.2) the 
biorthogonality condition 

(cp;, '-\Ii) = T/Jii . (5.6) 

6. EXPANSIONS OF FUNCTIONS OF .A(, AND 
.A(, t IN TERMS OF ~ DYADS AND THEIR 

ADJOINTS 

By analogy to the outer unitary product of two 
vectors, the § dyad E..ii and its adjoint E..Ji are defined 
as follows41,42: 

~;i = (1/J:)C£i~J , 

~}i = (1/J:)~i~:' 

(6.1a) 

(6.1b) 

Four significant relationshirs which are required in 
our subsequent discussion are listed here: 

.; 

(i) 1=) E .. _ ~_tt' (6.2a) 
;=1 

6 

(ii) ! = I§);, (6.2b) 
i=1 

6 

(iii) f(.A(,) = '2.f(Ki)Eii , (6.2c) 
i=1 -

6 

(iv) f(.A(,t) = If(-Ki)E;i' (6.2d) 
i=) -

These relations presuppose completeness of {cp;} and 
{'-\IJ-the set of eigenvectors of .A(, and its Hermitian 
adjoint .A(,t. This, in turn, implies that both .A(, and 
.A(, t should be semisimple matrices. The validity of this 
assumption will be investigated in Sec. 7. In the 
meantime, properties (i)-(iv) will be considered valid. 
In relation (iii), f(K) is a function expressible as a 
power series whose radius of convergence includes all 
the eigenvalues of .A(,. A similar statement holds for 
relation (iv). 

Consider now the coefficient matrix appearing 
inside the square brackets in Eq. (4.6), viz., 

r = :ll - iwf; (6.3a) 
or 

(6.3b) 

41 M. C. Pease, Ref. 36, Chap. 10 
•• A. D. Bresler and N. Marcuvitz, Brooklyn Polytechnic Insti­

tute, Microwave Research Institute Report No. R-565-57, 1957, 
Appendix I. 
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so that property (iii) applies. Thus, 

6 

r = Z(Ki - iw)(l/T;)§.CPiCP;§.. 
i=1 -

The eigenvalues and eigenvectors of the second prob­
lem have been labeled so that the eigenvectors ei , 

(6.3c) ~i' i = 1,2,3, with the same subscript are referred-to 
the same eigenvalue Ai = Xi .43.44 

Furthermore, the inverse of !:. assumes the form 

6 

£.-1 = L (Ki - iw r 1(1/T;)CPiCP!. (6.4) 
i=1 -

Equations (6.3c) and (6.4) for the expansions of 
!:. and !:.-1 can also be reached via property (iv). This, 
of course, necessitates writing rand r-1 in terms of 
.At, t, viz., £ = (-.At, t - iw0~~nd -

£-1 = ~-I(_.At,t - iW!)-I. 

That!:. and £-1 given in Eqs. (6.3c) and (6.4) are, 
indeed, inverses of each other follows without 
difficulty. 

7. SYNTHESIS OF SIX-EIGENVECTORS FROM 
TWO SETS OF THREE-EIGENVECTORS 

On the strength of the transformation indicated in 
Eq. (4.5), we shall be able to synthesize a complete 
set of six-eigenvectors of the matrix .;It, from the 
eigenvectors of two separate three-vector problems. 
This, again, is possible because of the symmetry 
present, and should not be thought of as a general 
procedure. 

It can be established that, corresponding to the 
eigenvalue problem 

(I) 

one has the eigenvector set 

and the eigenvalues 

Al = - [(I/al,u~€~)s~2 + (1/a;,u~€Ds~2], 
A2 = - [(I/al,u~€~)s;2 + (1/a;,u~€~)s:2], 
A3 = 0. 

(7.1) 

By direct analogy to these findings, given the charac­
teristic problem 

(II) 

associated with the characteristic values 

Xl = - [(1/al,u~€Ds;2 + (1/a;,u~E~)s~2], 
X2 = - [(1/al,u~E~)s;2 + (1/a;,ul€~)s~2], 
X3 = 0, 

are the eigenvectors 

(7.2) 

Theorem: If, given e' and h'., cP i = (e~, h~) is an _1 _z _ _Z_1 

eigenvector of .At, or, equivalently, of ~ with respect 
to the weight matrix ~, corresponding to the eigen­
value K i , i.e., 

(7.3) 

then ~; and ~; are respectively eigenvectors of prob­
lems (I) and (II) associated with the same eigenvalue 

K7·45 

Proof" If ~i = (~;, ~;) is substituted in Eq. (7.3), 
by eliminating ~; first and then ~:, there result the 
characteristic expressions 

(7.4a) 

(7.4b) 

which show immediately that the eigenvalues Ki of 
.At, occur in pairs as follows: 

K1.4 = ±At, K2.5 = ±At, K 3 ,6 = 0. (7.5) 

This ordering of the eigenvalues is justified by the fact 
that if ~i = (~;, ~;) is an eigenvector of .At, with the 
eigenvalue Ki' then CPi+3 = (e;, -h;), i = 1,2, is an 
eigenvector of .At, associated ;ith --K i • The validity of 
this statement can be established without difficulty. 

Consider formally the eigenvectors CPi = (e;, h;), 
CPi+3 = (e;, -h;), i = 1,2, CP3 = (e;, 0), and-cp; = 
(0, ~;). Ail that is known abo"lit this-set is that it satis­
fies the eigenvalue problem (7.3). In addition to this 
requirement, however, it is necessary that it also obey 
the biorthogonality condition and the completeness 
relationships. 

We shall examine next the implications of these 
restrictions. First it is specified that 

(7.6) 

The only difficulty with reference to this condition 
arises from the eigenvectors CPi and CPi+3, i = 1, 2. 
More specifically, --

<~i' ~i+3) = N~ - M~ = 0, i = 1,2, (7.7) 

'3 G. A. Deschamps and O. B. Kesler, Trans. IEEE Antennas 
Propagation 12, 783 (1964). 

•• O. B. Kesler, thesis, University of Illinois, 1965, Chap. 5 . 
•• The prime signifies that ~: and h: are suitably chosen scalar 

multiples of ~i and hi satisfying the biorthogonality condition 
(<Pi '~i) = 0, i ¢ j. This point will be discussed in greater detail 
agaifllater in this section. 
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b'. = .uh'. Since the two terms on the right-hand side with 
c~nnot~anish individually, it follows that the sets ~~ = I~"I ,s"!!., ~; = ~-lS'S'~Z' ~~ =!, 
{~~} and ~~} must be constructed so that N; = M~, and 

i = 1, 2. ~~ = [!:-1(i'(i'!., ~; = I~'I (i'~z' ~; = ~', 
Theorem: The eigenvector sets {~;} and \!!;}, in the 

sense defined in this section, satisfy the completeness 
relations 

3 3 

I = I(1/N~)!'i~~t, I = I(l/M~)~~~;t. (7.8) 
i=l i=l 

The proof of the theorem follows easily since the 
primed eigenvectors are scalar multiples of the 
unprimed ones. 

Theorem: The six-eigenvector sets {~i} and {~i} 
satisfy the completeness relation 

(7.9) 

Proof: 

6 2 t t 
IE.ii = I[(1ITj)cpj~j + (1ITH3)cpH3~H31 
i=l ;=1 

+ (1/T3)cp3~~ + (1/T6)cp6~J. (7.10a) 

However, T j = TJ+3 = 2N;, j = 1,2, and T3 = N~, 
Ts = M~. Hence, 

(7.10b) 

We conclude this section with an explicit repre­
sentation of the set {~i}: 

CP3 = (~~, 0), ~6 = (0, ~~) 

whence47 

3 

EE == !! = - 2 (Ai + w 2)-1(1/ Ni)~i~; Me> (8.8a) 
i=l 

_ 3 

,uH == !! = - 2 (Ai + w2)-1(1/Mi)~i~;Mm' (8.8b) 
i=l 

46 Here (*) denotes space-time convolution, whereas :r;:' stands 
for the inverse fourfold space-time Fourier transform. 

<7 O. B. Kesler, Ref. 44, Chap. 3. 

in which 

" " -i(, ') -1(' ')-~ , S = (.u3Ela1) Sxa", + s.yay + al .u1E1 szaz· 

8. SPECTRAL REPRESENTATIONS IN TERMS OF 
SIX- AND THREE-EIGENVECTORS 

With the expansion of £-1 presented in Sec. 6, the 
field vector cI» in Eq. (4.6) becomes 

6 

cI»(s, w) = - I (Ki - iw)-\l/T;)cpicp;~(s, w). (8.1) 
i=l 

A premultiplication of both sides by ~ results in a 
representation for the adjoint vector 'l': 

6 

'l'(s, w) = - I (Ki - iW)-l!iJi~(S; w) (8.2) 
i=l 

or 
'l'i(S, w) = -(Ki - iwrl~ls, w), (8.3) 

since 

~ls, w) = §.i~'l'(S, w), ~;(s, w) = !iIi ~(s, w). (8.4) 

In the space-time domain, 

~ = Q(r, t) * fer, t), (8.5) 
where46 

Q(r, t) = -:F4
1

• [~l(Ki - iwr\llT,)~icpIJ (8.6) 

is the matrix representation of the dyadic Green's 
function of the problem under consideration. 

In the previous section we succeeded in constructing 
a complete biorthogonal six-eigenvector set out of two 
three-eigenvector sets. Here we shall reverse the 
procedure and show that the spectral resolution of 
'l'(s', w) in (8.2) leads to a representation of EE in 
terms of {~i}, and ,uH in terms of {~i}' More specifi­
cally, 

The effective forcing functions are given by 

Me(s', w) = iW;!e - i§.' e-1;!m , 

Mm(s', w) = iW;!m + i§.'~-l.:!e. 

(8.7) 

(8.9a) 

(8.9b) 

It should be noted that for a moving medium, in 
the laboratory frame, EE represents only a part of the 
electric displacement, and ,uH only a part of the 
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magnetic indu:tion; ~ence the above definitions of 

the quantities ~ and !!. 
One may arrive at the three-vector spectral repre­

sentations exhibited in Eqs. (8.8a) and (8.8b) directly 
by eliminating ~ and !! from the original set of the 
Maxwell-Minkowski equations and proceeding along 
parallel lines. We chose, instead, to reach them via a 
more general six-vector formulation. 

9. THE CASE OF A LONGITUDINAL 
MAGNETIC DIPOLE 

We undertake here the task of determining the 
radiation arising from a z-directed magnetic point 
dipole described by the current density distribution 

J m = b(r - r')b(t - t')a z • (9.1) 

The effective forcing function Me appearing in the 

spectral representation of D [cf. Eq. (8.8a)] is then 

Mir, t) = -oCt - t')(l/t-t~)Vb(r - r') x az (9.2) 

in the space-time domain, and, from Eq. (8.9a), 
Me(s', w) has the form 

Me(s', w) = -(i/t-t~)§'~z 
x exp (-is, r' + iwt') = M r1(s, w) (9.3) 

in the dual space. Since it turns out that only the 
component of Me(s', w) along ~l is present, a longi­
tudinal magnetic dipole excites only the first mode; 
namely, 

Q(r, t) = [:Fal
. I l (s, t)] * [:1:11

. (-Mel)]' (9.4) 

In this equation, 

Il(S, t) = :Fol . (AI + w2r l 

with 

= 0, t < 0, 

= alE{t-t{u~ exp (- iwot)(sin WIt/WI)' t > 0, 

(9.5) 

Wo = U;sz(Ql/a l ), 

WI = ul[(t-t{It-t~)S;2 + b2s;r!, 
ul 2 = alE{t-t~ - Q~/al' 

b2 = all + u~(Q~/ai). 
The inverse spatial Fourier transform of l l (s, t) is 
given by 

(9.6a) 

for t < ° and 

12(r, t) = albt-t~E{(Ul/47Trl)b(Ult - r1) (9.6b) 

for t ~ 0, where 

and 

with 

[
(t-t~jt-t~)~ 

A = ° 
° 

3 

rO=Lxiai , 
i~l 

° ° J (ft~/t-t~)~ ° . 
° ljb 

The inversion of the second portion of Eq. (9.4) yields 

13 = :F4l . (-Mel) = (ilt-t~)o(t - t')Vo(r - r') x a~. 

(9.7) 
Therefore, finally, 

Dl(r, t) = 12(r, t) * 13(r, t) 

= V x [a l E;b(u l /41TRI)b(ul'T - RI)]az , (9.8) 

in which T = t - t' and 

Rl = {t-t~ [(x _ X,)2 + (y _ y')2] 
t-tl 

ni - 13
2 [z _ z' _ v(n~ - 1)J2}~. 

+ n~(1 - (32
) ni - 132 

We distinguish the following two cases: If nIf3 < 1, 
i.e., if the speed of the medium is smaller than that of 
propagation of light along the x axis of the material, 
the wavefronts, which, for constant T, are ellipsoids 
with semiaxes T(t-t~E~)-~, T(ft~E~)-~, and Tb-I(t-t~EJ-! 
along the principal axes, enclose the source point 
resulting in what we shall, henceforth, call ordinary 
radiation. On the other hand, however, for nlf3 > I, 
the wavefront surfaces expand and move inside a 
conical region, thus giving rise to the Cerenkoveffect. 

By an analogous procedure, it is found that a 
longitudinal electric dipole excites only the second 
mode. The above discussion applies here unaltered 
except that the wavefronts now are oblate spheroids 
with semiaxes T(EJt~)-~, T(E~t-t~)-~, and Tb-l(E~t-tJ-~, 
that is, they are dual to the previously found ones. 

These two distinct types of radiation have been 
referred to in the literature as the ordinary and extra­
ordinary waves, respectively. This is due primarily to 
the fact that, in working with stationary uniaxially­
anisotropic media, the magnetic permittivity is usually 
assumed to be a scalar quantity. Since, however, in this 
exposition, both waves are "extraordinary" in the 
sense that neither corresponds to a spherical wave­
front, we shall no longer adhere to the established 
nomenclature; instead we shall refer to them as waves 
of type I and II, respectively. 

The conical regions within which the Cerenkov 
phenomenon occurs for the two types of waves, al­
though of the same general orientation, do not have in 
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general identical half angles. We shall return to this 
point in the next section where the radiation emanating 
from a transversely oriented magnetic dipole is 
examined. 

10. THE CASE OF A TRANSVERSELY 
ORIENTED MAGNETIC DIPOLE 

The illustration of the general formalism is con­
tinued in this section by examining the radiation 
emanating from an x-directed magnetic dipole which is 
described mathematically by the current density 
distribution 

Jm(r, t) = b(r - r')b(t - t')a",. (10.1) 

Since the source is not aligned with the axis of sym­
metry of the medium, one would, in general, expect 
the excitation and, consequently, the coupling of at 
least two modes. Of course, the matter is settled 
immediately by expanding the effective source func­
tion M.(s, w) in terms of the eigenvectors {!!i}' 

Corresponding to the prescribed current-density 
distribution in Eq. (10.1), one has the effective source 
function 

Me(r, t) = -bet - t')V x 110-1 . b(r - r')a", (10.2) 

in the space-time domain, and, from Eq. (8.9a), 

Me(s',w) = -(i/a1{l~)$'~",exp(-is.r' + iwt') 

(10.3) 

in the dual space. The components of Me(s', w) along 
the "adjoint" eigenvectors !!i' i = 1,2,3, are given by 

Mei = (1/Ni)~i~JMe, i = 1,2,3. (10.4) 

Specifically, 

M e1(s, w) = (i/a1{l~)(s~s~/s~2)$'~z 
X exp ( - is· r' + iwt'), (10.5a) 

M e2(s, w) = -(i/a1{l~)(s;/s~2)$'$'~. 

X exp (-is· r' + iwt'), (1O.5b) 

M e3(s, w) = O. (1O.5c) 

It is seen, therefore, that the total field :0 will consist 
of a combination of waves of types I-and II. The 
spectral representation in Eq. (8.8a) enables one to 
find each mode separately. 

The individual modes D1 and D2 are written as 
follows: --

:Ol(r, t) = :Fo1. {[ _:F-;1 . I(ll(s, w)] 

* [:F-;1. !~ll(s, w)]}, (1O.6a) 

D2(r, t) = -:Fo1 • {[_.1-;1 . I(2J(s, w)] 

* [:F3
1. !i2J(S, w)]} (1O.6b) 

in space-time. The functions I(i), !ii), i = I, 2, are to 
some extent arbitrary. Their choice, however, should 
be made judiciously in order that the task of carrying 
out the integrations be less formidable. Suppose that 

IW(s, w) = (A'1 + W2)-lS~S~-2, (10.7a) 

I(2)(s, w) = ().2 + W2)-lS;S~-2, (10.7b) 

!i1J(s, w) = (i/a1{l~)s~S'~. exp (-is. r' + iwt'), 

(10.7c) 

!i2J(s, w) = (i/a1{l~)S' S'~z exp ( - is· r' + iwt'). 

(10.7d) 

With this selection, the second parts in the right-hand 
sides of Eqs. (10.6a) and (1O.6b) can be integrated out 
without too much difficulty. Actually, 

I~ll(r, w) == :F-;1 . Iill(s, w) = (l/al/-l~) 

X exp (iwt')[ - i(%z)V' + w01V']b(r - r') x a. 

(10.8a) 
and 

I~2)(r, w) == :F-;1 . Ii2)(s, w) 

= -(i/a1{l~)exp(iwt')V' x V' x b(r - r')az • 

(1O.8b) 

The differential operator V' is defined as 

V' = a",(%x) + ai%y) + a.(%z + iWOl)' 

The first parts on the right-hand sides of Eqs. (1O.6a) 
and (l0.6b) can be written down explicitly as follows: 

I~ll(r, w) 

== -:F31 
• Iill(s, w) = al/-l~E~ r exp (is. r) 

(21T)3 JEa 

[{l~ 2 1 2" 2J-l -2 . ---; St + - (Sz + w(1) - a1{llE1w S",St ds, 
{l3 a1 

(10.9a) 
I~ll(r, w) 

-1 (2) a1{l~E~1 . = -:F3 . II (S, w) = -- exp (IS· r) 
(21T)3 Ea 

. -; St + - (Sz + w(1) - al{lI€lw S'JISt ds. [E~ 2 1 2, , 2J-1 -2 

E3 a1 

(10.9b) 

It remains now to carry out these integrations. Since 
the elements of ~' and /!:.' are positive real numbers by 
hypothesis, any difficulty which may arise in per­
forming the integrations will be due entirely to the 
sign of a1 which is positive for nlfJ < 1 and negative 
for n1fJ > 1. It is imperative, therefore, that we 
differentiate between these two cases. 
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Case (i): nlf3 < 1. To avoid disrupting the continuity 
of the main theme of this section by an excessive 
amount of details, we shall present here the final forms 
of the integrals (1O.9a) and (10.9b), and include the 
highlights of the derivations in the Appendix: 

1(1)(r w) = ia1(€{,uD! e-iwnlz x 
2, 47T iw x2 + l 

X [exp (ikorl) - exp (ikoat Izl)], (10. lOa) 

. (II)! -iwnlZ 
1(2)(r w) = !a1 €1,u1 _e __ y 
2, 47T iw x 2 + l 

X [exp (ikor2) - exp (ikoat Izl)], (1O.10b) 
where 

ko = w( €~,u~)!, 
rl = [(,u~/,u~)(X2 + l) + alz

2]!, 

r2 = [(€~J€~)(X2 + l) + alz
2]!. 

It is interesting to observe that I~2) can be obtained 
from I~l) by replacing x with y and substituting /!:.' for 
~', and vice versa. Henceforth, IJil, i = 1, 2, will be 
considered as dual quantities in the sense described 
above. 

If it is born in mind that the convolution is a com­
mutative operation, and that Lu = Lo * u for an 
arbitrary differential operator and a suitable function 
u, it develops that 

and 

I>I(r, w) = 1~1)(r, w) * I~I)(r, w) 

= ~(€~,)! eiwt'(_i l V' + W!:lIVI) 
47T ,ul az 

e-iwnlz X 
x a -------

Z W X2 + y2 

X [exp (ikoRl) - exp (ikoat IZI)] 

(10,lla) 

1>2(r, w) = 1~2)(r, w) * I~2)(r, w) 

= - ~ (€~)! eiwt'V' x V' x a
z 

47T ,u~ 

besides the usual factors proportional to exp (ikoRi)' 
i = 1, 2, after the indicated differentiations have been 
carried out. This feature, however, is characteristic of 
the individual modes, but not of the total field. The 

separate fields associated with 01 and O2 are connected 
with current distributions on the plane Z = 0, which 
have singularities at the source point, and spread over 
the entire plane when thought of as surface currents.48 

We present now the fields 01 and O2 in space-time: 

I>I(r, t) = ~ (€~)} V' x az{ 2 X 2 
47T ,u~ X + y 

X [al(al€~,u~)~ !JO[T + !:lIZ - (a l€{,uD!Rd}, 

(10.12) 

1>2(r, t) = - 4~(;~tal(al€~,u~/{[ Vt(X2: y2 !J 
€~ y (a X + a y) 1 ] 

- ~ X2 + y2 az ax ay R2 

X 0[7 + !:lIZ - (a l€{,uD!R 2]}. (10.13) 

The support of the fields are two impulsive wave­
fronts which correspond to waves of type I and II, 
respectively. Their mathematical description is found 
by setting the arguments of the Dirac 0 function in 
Eqs. (10.12) and (10.13) equal to zero, viz., 

1 

(i) 7 + !:lIZ - (a 1€{,uD"RI = 0, (10. 14a) 
1 

(ii) 7 + !:lIZ - (al€{,u~)"R2 = O. (1O.14b) 

These expressions appear to be of a different form 
compared with previously encountered wavefront 
equations. They can, nonetheless, be converted into 
the standard ellipsoidal formulas49 

(X2 + y2)/A~ + (Z - Zc)2/B2 = 1, i = 1,2, 

(10.15) 
e-iwnlZ y with 

X ----,--
iw X2 + y2 

1 

X [exp (ikoR2) - exp (ikoai IZI)], 
(lO.l1b) 

wherenowX= x - x', Y=y - y',Z = z - z',and 

Rl = [(,uM,uD(X2 + y2) + alZ2]!, 

R2 = [(€~M)(X2 + y2) + alZ
2]!. 

A distinctive feature in Eqs. (lO.lla) and (lO.llb) 
is the appearance of terms proportional to 

exp (ikoal /ZJ) 

Al = [(,u~/,u~)(1 - (32)/(ni - (32)]!C7, 

A2 = [(EUE~)(1 - (32)J(ni - (32)icT, 

B = nlcT(1 - (32)/(ni - (32), 

Zc = (3c7(ni - l)J(ni - /32). 

An observer at an arbitrary field point will experience, 
in this case, the effect of two distinct impulses. 

4. P. Co Clemmow, Proc. IEEE 110,107 (1963). 
4' A similar conversion has been carried out by Tai (cf. Ref. 22) 

for a moving isotropic medium. 
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Case (ii): nlfJ > 1. It is shown in the Appendix that 

(1)( ) _ ia~(e~,u~)! exp (iwO~z) x 
12 r, w - " 2 

211' (U x- + y 

for a'~z > 1 

1 

X (sin qor{ - sin qoa~:r Izl) (l0.t6a) 

[(,u~/,u~)(X2 + y2)]!, and 

(2)( ) _ ia~(e{,uD! exp (iwO~z) y 
12 r, w - 2 2 

211' (J) X + y 
1 

X (sin qor~ - sin qoa? Izl) (1O.16b) 

for a~!z > [(e~/e~)(.x2 + y2)]!. Both IiI) and Ii2) vanish 
outside these regions. The following notational 
definitions have been used: 

a~ = -aI, O{ = -01, qo = w(a{e{,u{)!, 

r{ = [a{z2 - (,u~/,u{)(X2 + l)]!, 
r~ = [a~z2 - (e~/e{)(x2 + l)]!. 

The fields fi1 and D2 in space-time are identical with 
these in Eqs. (10.12) and (10.13), except that Rl and 
R2 must be replaced by 

R~ = [a{Z2 - (,u~/,u{)(X2 + y2)]!, 

R~ = [a 1Z
2 - (eMe{)(X2 + y2)]!, 

respectively. In addition, the supports of the fields are 
now the impulsive wavefronts 

1 

(i) T - O{Z - (a{e{,u{)'lR{ = 0, (10.17a) 

(ii) T - O;Z - (a{e{,uD!R2 = 0, (l0.17b) 

which may also be rewritten as in Eq. (10.15). 

In conclusion, the range of validity of the solutions 
in Eqs. (10.16a) and (lO.l6b) is a strikingly clear 
mathematical evidence of the Cerenkov effect which 
occurs in two conical regions in this example. Al­
though these regions (corresponding to waves of type 
I and II) are of the same orientation-they have a 
common vertex at the source point and their common 
axis is parallel to the z axis-they do not have· the 
same half angles, unless e;/ e~ = ,u;/,u~ . 

The entire space, therefore, can be divided into 
three parts: (a) the region outside both cones where 
no radiation fields are present ; (b) the part between 
the inner and the outer cones where a wave of one type 
only can exist; and (c) the intersection of both cones 
which, of course, coincides with the inner or smaller 
cone in this case, where an interaction of both modes 
takes place. 

11. CONCLUDING REMARKS 

If the uniaxial medium is in motion with a uniform 
velocity directed along, say, the x axis, i.e., v = va"" 

it can be shown that the dyadics E and !L have a 
diagonal form in the un primed coordinate frame. 
This is a direct consequence of the choice of the 
motion along one of the principal axes. However, 
because the motion does not take place along the 
axis of symmetry of the medium, both E and !L have 
now a biaxial character; that is, their diagonal 
elements are, in general, distinct.50 In other words, 
apart from the intensification of the degree of aniso­
tropy, a change in the type of anisotropy has also 
occurred. The tensors; and ~ (see Sec. 2) are trans­
pose with respect to each other. 

In the case of the "effectively" biaxially anisotropic 
material described above, although it is possible to 
determine the eigenvalues of .;\(,(s) (cf. Sec. 8) 
explicitly, and, formally, find a complete set of eigen­
vectors which can be used as a basis, the exact evalua­
tion of the integrals, if not altogether impossible, can 
be achieved with great difficulty because of the com­
plicated form of the eigenvalues and eigenvectors. 
This is, in turn, due to the involved nature of the 
resulting dispersion or wave-normal surface. 51 

In light of the biaxially anisotropic nature of the 
medium as seen by an observer in the laboratory frame, 
it is no longer expected that z-directed electric and 
magnetic dipoles give rise only to one type of radiation 
field, nor should it be expected the conical regions 
within which the Cerenkov effect occurs will be 
circular any longer. 
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APPENDIX 

In this appendix we provide an outline of the steps 
followed in the transition from Eqs. (10.9) to (10.10), 
on the one hand, and from Eqs. (10.9) to (10.16), on 

50 In the nonrelativistic limit, E = E' and !J. = !J.'; that is, the 
medium presents to an observer in the laboratory frame a uniaxial 
character, even if the motion is not in the direction of the axis of 
symmetry. 

51 For a stationary, biaxially anisotropic medium, the wave­
normal surface is a quartic or a fourth-degree surface, symmetric 
with respect to the origin, and not factorable into irreducible terms 
of lower order. The latter is a characteristic property of both a 
bona fide uniaxially anisotropic medium whose dispersion surface is 
reducible to two second-order surfaces, and an isotropic medium 
the fourth-degree wave-normal surface of which is twofold de­
generate, that is, it can be written as a product of two identical 
second-order factors. 
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the other hand, accordingly as a1 is positive or 
negative. 

Case (i): n1P < 1. In Eq. (lO.9a) let sand r undergo 
an affine transformation which takes ~ to ~o = As + ! 
and!, to !,o = :i-1! with 

and31•52 
a 

ro = I aixi , 
i=l 

Under this transformation, 

s 
So = I aisi • 

i=l 

l(l)(r w) = af€'(I/.'I/.,)1-e-il.ro _1_ 
2, 1 1 r1rS (27T)S 

X ( ei.o·rO(S~ - k~)-lSlS012 dso. (A1) 
JEa 

The presence of the terms Sl and S~t suggests a further 
transformation of the variables Si and Xi' i = 1,2,3, 
into cylindrical coordinates, viz., 

Sl = P cos 1p, S2 = P sin 1p, S3 = Ss, 

Xl = X cos IX, X 2 = X sin IX, Xs = Xs· 

Written in terms of the new variables, Eq. (AI) 
assumes the form 

/(1)(r w) = a!€'(I/.'I/.,)1-e-il.ro _1_ 
2, 1 1 r1rS (27T)3 

X (OOfOO (27T(p2 + S~ _ k~r1 . .. 

Jo -00 Jo 
exp i[pX cos (1p - IX) + XaSa] 

X cos 1p d1p dss dp. (A2) 

The integration over the variables X and Sa can be 
carried out without encountering any particular 
difficulty: 

(27T Jo cos 1p exp [ipX cos (1p - IX)] d1p = 27TiJ1(PX) cos IX, 

(A3) 

(A4) 

If the last two results are substituted back into Eq. 
(A2), one has 

/(1)(r w) = ai€ '(II.'I/.,)t e-il.ro J.... cos IX 
2, 1 1 r1r3 47T 

i
OO 

J ( ) exp [-IX31 (p2 - k~)t] d (A5) 
X 1 PX (2 k2)t p. 

___ 0 p-o 
52 G. Birckhoff and S. MacLane. A Brief Survey of Modem 

Algebra (The Macmillan Co., New York, 1962), pp. 212, 254. 

The integration over p can be effected with the aid of 
the well-known Sommerfeld formula 

(A6) 

Let us multiply both sides of this equation by 11 and 
integrate over 11 from 0 to X.48 If, furthermore, the 
relation 

is taken into account, it follows that 

i
oo 

J1( ) exp [-Ixsi (p2 - k~)t] d 
XP (2 k2)1- P o p - 0 

=! (X exp [iko(1I2 + x~)1-] 11 d1l. (AS) 

X Jo (11
2 + x~)t 

The integration in the right-hand side can be com­
pleted by a simple variable substitution. Finally, in 
terms of the original variables, 

. (' ')1- -ironlZ 
/~1)(r, w) = tal €lfl1 _e_. ___ X_ 

47T IW X2 + y2 

X [exp (ikor1) - exp (ikoa~ Izl)]. (A9) 

The function 1~2)(r, w) is the dual of li1)(r, w) with 
respect to x, y, :.', and t!:.'. 

Case (ii): n1P > 1. Through the affine transforma­
tion So = As + I and ro = A-1r in which A and I are 
presc~ibed as - - - - --

and 

one has 

[(fl~/ fl~)t 0 0] 
:i = 0 (fl~/fl~)! 0 , 

o 0 (l/a~)! 

1=[ ~ ] 
- -wn~a~-t' 

a 
So = I aisi , 

i=l 

3 

ro = I aixi , 
i=l 

/(l)(r (I) = _ a'~€'(II.'III.')te-il-ro _1_ 
2, 1 1,,"1 rS (27T)3 

xi eiSo·rO(s2 - S2 + q2)-lS S-2 ds 
01 3 0 1 01 o· 

Ea 

(AW) 
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Resorting next exactly to the same transformation to 
cylindrical coordinates as in Case (i), we may write 

I(l)(r w) = _alttE'(/J.'/u/)!e-il.ro _1_ 
2, 1 1 rl ra (27T)3 

x (OOJOO (2"(p2 _ S; + q~)-l 
Jo -00 Jo 

x exp i[px cos (1p - IX) + xasa] 

X cos 1p d1p dSa dp. (All) 

The integration over the azimuthal variable 1p is the 
same as before [cf. Eq. (A3)]. However, 

- e".x3 [s; _ (p2 + qm-1 dS3 
1 Joo . 

27T -00 

sin xa(p2 + q~)t 
(p2 + q~)! 

Xa > O. (Al2) 

The integral vanishes otherwise. The last integration is 
evaluated by means of a contour integration in the 
complex Sa plane. 

There still remains the integration over the variable 
p: 

(1) I~ '( ")! -il.ro i 12 (r, W = - al E1 fl1fla e 27T cos IX 

J
OO • 2 2 ! 

X J ( ) sm Xa(P + qo) d 
1 PX (2 2)t P 

o P + qo 
(Al3) 

for X3> O. 1~1)(r, w) vanishes for X3 < O. Consider 
now the tabulated Hankel integral transform 

J ( ) 
sm Xa P qo d _ cos qo Xa - v i 

00 . (2 + 2)1 (2 2)t 
o vp 1 P P - 1 

o (p2 + q~)~ (x; _ V2)~ 

(A14) 

for v < Xa. This integral vanishes otherwise.5a If, 
again, both sides of this relation are multiplied by v 
and integrated over v from 0 to X, 

J
oo . (2 + 2)1 

J ( ) sm xa P qo d 
1 XP (2 2)! p 

o P + qo 

=! rx cos qo(X; - v
2
)! v dv, v < X

a
, (A1S) 

X Jo (x; - v2)1 

the right-hand side of which is readily integrable. 
Finally, 

(1) ia~( EU-tD! eiwO
)" x 

12 (r, w) = -- 2 2 
27T W X + y 

X (sin qor{ - sin qoa~! Izl) (A16) 

in the region a~!z > [(fl;/fl~)(X2 + y2)]t. The function 
1;2) (r, OJ) is the dual of 1;1) (r, OJ) in the sense mentioned 
earlier. 

53 A. Erdelyi, Ed., Tables of Integral Transforms (McGraw-Hill 
Book Co., New York, 1954), Vol. II. 
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Generalized Bose Operators in the Fock Space of a Single Bose Operator 
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G~ne~alized Bose operators b which reduce by two the number of quanta of a Bose operator a are 
stu~!Ied In the Fock space of a. All representations of the b's as normal-ordered (infinite degree) power 
sen~s. of the a's are found. The unitary operators relating the irreducible components of b to a are also 
exhibited. The analogous result for b1k)'S which reduce the number of a quanta by k is given and the limit 
k ->- 0Ci is discussed. 

I. INTRODUCTION 

Free fields and canonical quantization are important 
in quantum theory. Besides describing the motion of 
noninteracting systems, these quantization methods 
allow treatment of in and out fields for theories with 
interaction and of fields for quasiparticle excitations. 
From the mathematical point of view , free and canoni­
cal fields can be used to construct more complicated 
fields; for example, in the neutrino theory oflightl and 
in the theory of superconductivity.2 Few exact explicit 
results are available for fields whose representation in 
terms of a free or canonical field contains terms of 
arbitrarily high degree. Several theorems state that 
only infinite-degree series in a free field can give 
nontrivial theories.3 

In the present article, we study a very simple 
problem leading to infinite degree series, but we try 
to give a thorough treatment. Our original stimulus 
was the article of Streit,4 in which unitary equivalence 
properties of representations of the inhomogeneous 
Lorentz group are used to establish the existence of 
generalized free fields in the F ock space of an irre­
ducible free field. 5 We plan to study the power-series 
representations of such generalized free fields in a 
later publication. In the present article we study 
generalized Bose operators, which we define (in 
analogy to generalized free fields) to be operators 

• Supported in part by the U.S. Air Force Office of Scientific 
Research under Grant AFOSR 68-1453. 

t Supported in part by the National Science Foundation under 
Grant NSF GP 6036. 

1 See A. S. Wightman, in High Energy Electromagnetic Inter­
actions and Field Theory, M. Levy, Ed. (Gordon & Breach Science 
Publishers, Inc., New York, 1966), and references therein. ' 

2 See, for example, J. Bardeen, L. N. Cooper, and J. R. Schreiffer, 
Phys. Rev. 108, 1175 (1957). 

3 See, for example, K. Bardakci and E. C. G. Sudarshan, Nuovo 
Cimento 21, 722 (1961); O. W. Greenberg, J. Math. Phys. 3, 31 
(1962); O. W. Greenberg and A. L. Licht, ibid. 4, 613 (1963). 

• L. Streit, Helv. Phys. Acta 39,65 (1965). 
• Such generalized free fields are equivalent to infinite-degree 

normal-ordered series in the irreducible free fields. No finite-degree 
series will suffice to give a c-number commutator, since if the highest 
degree term has degree N, then the commutator will contain a 
normal-ordered term of degree 2N - 2 which cannot be canceled 
by any other term. 

whose commutator is a c-number and whose anni­
hilation part annihilates the vacuum state, in the Fock 
space of a Bose operator. 

After a review of the theory of a single Bose oper­
ator a in Sec. II, we define in Sec. III generalized Bose 
operators b which reduce the number of a quanta by 
two. We consider 'both irreducible and reducible b's 
and consider the unitary equivalence between the 
irreducible b's and the a's. In Sec. IV, we find repre­
sentations of the b's as infinite-degree power series in 
a and a*, valid on the domain spanned by the eigen­
vectors of the number operator N of the a's. This 
representation then determines b on its full domain by 
closure. We find power-series representations of band 
b* directly from their Bose commutation relations 
and, independently, using the relation (which we 
derive) N = 2b*b + A_, where A_ is the projector 
onto the odd-quanta subspace Je_ of the a Fock 
space Je.6 We show in Sec. V that the representations 
of b found in Sec. IV are the most general power-series 
representations. We construct the unitary operators 
U± relating the irreducible b± and a in Sec. VI. In 
Sec. VII, we show that the algebra A+ of even powers 
of a and a* is irreducible, and we represent the irre­
ducible b+, which acts on the even-quanta subspace 
Je+ of Je, as a power series in A+. In Sec. VIII, we 
give the power series for a reducible b(k) which reduces 
the number of a quanta by k and discuss the limit 
k ..... 00. Finally, we make some concluding remarks in 
Sec. IX. 

II. REVIEW OF THEORY OF A SINGLE 
BOSE OPERATOR 

We consider the Hilbert space Je of sequences 
"p = {cn I n = 0, 1,2, ... } such that I Icn l2 < 00, 

with the usual inner product, etc. We write 

"p = I Cn In), 

with {In> I n = 0, 1,2,' .. } a complete orthonormal 

• Another derivation has been given by A. L. Licht (private com­
munication) in terms of the projection operator 10)(01. 

1168 
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basis of Je: 
(n In') = bnn,· 

We define the usual annihilation operator a on this 
basis by 

a In) = n~ In - 1), n > 0, a 10) = 0. 

The unique closure of a is given by7 

on its domain 

~a = {! Cn In) I! Icnl 2 n < oo}. 

The adjoint a* of a satisfies 

a* In) = (n + J)! In + 1) 

and the domain of its closure is also ::Oa. Thus, the 
number operator 

N= a*a 
satisfies 

Nln) = n In) 

and its closure has domain 

~N = {! Cn In) 1!lcn12 n2 < oo}. 

On ~ N, the commutation relation 

[a, a*] = I (1) 

is valid so that (a, Je) is a representation of the abstract 
commutation relation corresponding to (1). This 
representation is irreducible and any other irreducible 
representation of (1) by closed densely-defined oper­
ators on a Hilbert space is unitarily equivalent to it.s 

We note finally that the relations 

[N, a] = -a, [N, a*] = a* 

are valid on a suitable domain. 

III. GENERALIZED BOSE OPERATORS 
WHICH CREATE AND DESTROY 

TWO a QUANTA 

We consider the subspace 

(2) 

Then, 

(4) 

and the closure of b+ has domain ::Oa n Je+. We see 
immediately that 

N+ = b!b+ 

has domain ::ON n Je+ and satisfies there N = 2N + . 
On ~N n Je+, the commutation relation 

[b+, b!] = 1 

is valid so that (b+, Je+) is another representation of 
(1). Since (b+, Je+) is isomorphic to (a, Je) under 
a ~ b+, In) ~ 12n), it is, in fact, another irreducible 
representation of (1). 

Similarly, we can consider the subspace 

Je_ = L~oC2n+112n + 1) EJe} 

of Je and the operator b_ on Je_ defined by 

with &Zi+l' i = 0, 1, 2, .. " again arbitrary real 
numbers. Then 

(6) 

The closure of b_ has domain ::Oa n Je_ and 

has domain ~ N n Je_ and satisfies there N = 2N _ + l. 
On ~ N n Je_ the commutation relation 

is valid so that, since (b_, Je_) is isomorphic to 
(a, Je), (b_, Je_) is another irreducible representation 
of (1). 

The irreducible representations (b±, Je±) of (1) 
possess vacuum states IK±), where K+- = 0, K_ = I, 
and there exist unitary operators U ± on Je such that 

(7) 
and 

of Je and define on it the operator b+ by U±lb±U ± = a. (8) 

b+ 12n) = ei82n-2(n}~ 12n - 2), b+ 10) = 0, (3) Explicitly, we can take 

with &z;, i = 0, 1,2, .. " arbitrary real numbers. U± In) = 12n + K±). 

7 See C. R. Putnam, Commutation Properties of Hilbert Space Now Je is the direct sum 
Operators (Springer-Verlag, Berlin, 1967), Lemma 4.43. This book 
contains references to the original literature. Je = Je+ EB Je_ . 

8 See Ref. 7, Theorem 4.5.1. This theorem requires a more precise 
statement of the conditions needed for uniqueness. Our operators 
always satisfy these conditions. Writing A± as the projection operator onto Je±, we 
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define an operator b on X by 

b = b+A+ + b_A_. (9) 

Then, the closure of b has domain ~a and the closure 
of 

M = b*b = N+A+ + N_A_ 

has domain ~ N and there satisfies 

N= 2M+ A_. 

The commutation relation 

[b, b*] = 1 

is valid on ~N so that (b, X) is a reducible representa­
tion of (1) with irreducible decomposition (9). 

Let us write the above b± defined by (3) and (5) as 
b±«(}±), where (}± is symbolic for the set {(}i I i = 
2j + /(±;j = 0, 1,2, ... }. Then if (}~ are any other 
sets of real numbers, the corresponding b±«(}~) == b~ 
also define irreducible representations of (1). Thus 
there exist unitary operators 

U ±«(}±, (}~), U±.\(}±, (}~) = U ±«(}~, (}±), 

such that 

If V±(r; ocr) are the unitary operators inducing the 
transformation b±«(}J -+ b±«(}(;}), with 

(}Y)=(}i' for i~r, (}~r)=(}r+ocr' 

then the general operator defined by (10) can be 
written 

00 

U ±«(}±, (}~) = II V±(r; (}; - (}r)· (11) 
r=O 

We note that the simple unitary transformation 

b«(}') = eiaNb«(})e-iaN 

is an example of (10) with 

Thus, 

corresponding to the commutation relation 

[N, b] = -2b, 

which is easily checked on a suitable domain. Another 
simple transformation is 

which gives 

We conclude this section by exhibiting some easily 
verifiable relations valid on obvious domains: 

A± = HI ± e'71N), 

[N, b±] = -2b±, 

a*a = 2b!b± + K±, 

a*a = 2b*b + A_, 

U±lb!b±U± = a*a, 

U±la*aU± = 2a*a + A_. 

Note that Eqs. (9) and (3)-(6) give the most 
general representations of a band b* which satisfy 
[b, b*] = 1, [N, b] = -2b, and ~b :::> J(, = the sub­
space of X spanned by finite linear combinations of the 
states In). 

IV. POWER SERIES REPRESENTATIONS OF b 

We want to find an expression for b as a power 
series in a and a* on the subspace J(,. Then the closure 
of this operator will coincide with the most general b 
operator of the previous section. We search for all 
power-series representations on J(, of operators b 
which satisfy the commutation relations 

[b, b*] = 1 (12) 

and 
[N, b] = -2b. (13) 

These power series will be found to satisfy Eqs. (3), 
(5), and (9); again the b«(}) of the previous section are 
the only representations of (12) and (13). 

Equation (13) holds if and only if b has the form 

00 

b = ,!oc;a*;ai+2. 
;=0 

(14) 

This expression is well defined on J(" since only a finite 
number of terms will contribute when it operates on 
any vector in J(,. We must now determine the OC; so 
that (14) satisfies (12). We first note that since (14) 
annihilates both 10) and II), it must define a reducible 
representation of (12). Writing 

(I 5) 

so that 
(16) 

we see that b± satisfy (12) and (13). Clearly (b±, X±) 
are irreducible representations of (12) so that (16) is 
the irreducible decomposition of b. 

It follows from Eq. (14) that 

b* In) = iak[ n! (n + 2)!]-! In + 2) 
k=O (n - k)! (n - k)! 
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and 

" [en + 2)! n! J1 
bin + 2) = !oc; ( _ ')' ( _ ')' In), 

j=O n J. n J. 

so that 
bb* In) = F(n) In) 

and 
b*b In) = F(n - 2) In), n ~ 2, 

where 

F(n) = n! (n + 2)!! '. . 
/

" Q( . /2 
i=O (n - J)! 

Thus Eq. (12) requires that 

F(n) - F(n - 2) = 1, n ~ 2. 

(17) 

(18) 

(19) 

(20) 

Furthermore, use of (12) and (17) with In) = 10), 
11) gives 

F(O) = F(l) = 1. (21) 

The solution to (20) and (21) is 

F(2m) = F(2m - 1) = m + 1, m = 0, 1,2, ... , 

or 
F(n) = Hn + t + ie-1tl. 

Now, from Eq. (19) we find that 

n Q( [F(n) J1 ! i = eiUn == R(n), 
i=o(n-j)! n!(n+2)! 

with {O,,} arbitrary real numbers. Thus, 

"i,k Q(j(-It = (-I? R(n _ k). 
;=0 (n - k - j)! k! k! 

(22) 

(23) 

(24) 

We next sum Eq. (25) from k = ° to k = n and inter­
change the j and k summations to obtain 

i ,!i Q(;(_l)k = i (_l)k R(n _ k). (26) 
i=ok=o(n - j - k)! k! k=O k! 

Using the identities 

i (_1)k _ {O, 
k=O (r - k)! k! 1, 

Eq. (26) becomes 

r > 0, 

r = 0, 

Q(n = i(-I? R(n - k) = i (-1)~-j R(j) 
k=O k! ;=0 (n - })! 

or, with (23) and (24), 

Ct. = ± (_1);-r [2r + 3 + (-1)11 ei8r 

J r=O(j - r)! 4(r!)(r + 2)! 

= ~ ± (j) (_1);_.[2r + 3 + (-1)1! ei8r• (27) 
2j!r=0 r (r + 2)(r + 1) J 

Thus, Eqs. (12) and (13) require thatb have the form 
(14) with the {Ct.;} given by (27). Conversely, any b 
having the form (14), (27) will satisfy (12) and (13) 
on J\,. We have, therefore, found the most general 
power-series representation of b on J\,. 

Equations (19) and (23) were deduced above by 
applying the commutation relation (12) on an n­
particle state. An alternate, and instructive, derivation 
of these equations proceeds as follows. The irreducible 
components b± of b, defined by Eq. (15), each satisfy 
(12) and (13): 

[b!, b:!:l = 1, 

[N, b±l = -2b±. 

(28) 

(29) 

Since the (b±, J\,±) are irreducible unitary operators, 
U± exist satisfying (7) and (8). Multiplicatton of (29) 
by U':;/ on the left and U± on the right gives 

[U;/NU:!:, a] = -2a, 

from which one concludes that on J\" 

U;/NU:!: = 2N + f±(a) (30) 

for some functions f±(a) of a only. 
Since (30) must be Hermitian, however, the f±(a) 

must be constants, say A±. Finally, application of 
(30) on the vectors I K±) gives A:!: = K±. Thus we have 
derived the relation 

so that 
(31) 

on J\,:!:, or 

on J\,. We can also write on J\,: 

N = 2b*b + A_. (32) 

Application of (32) on the state In + 2) now gives the 
relation 

n + 2 = 2n! (n + 2)! / i Q(j. /2 + HI - (-1)n], 
i=o(n-J)! 

(33) 

which is precisely Eqs. (19) and (23). We saw above 
that (27) is the most general solution to (33). 

We have seen that (12) and (13) imply (32). We also 
see that (13) and (32) determine the most general 
solution of (12) and (13). Thus, given (13), Eqs. (12) 
and (32) are equivalent in J(,. 

V. EXPLICIT VERIFICATION THAT THE REPRE­
SENTATIONS OF SECTION IV SATISFY 

EQUATIONS (3) AND (5) 

In Sec. IV we found all the representations of (12) 
and (13) as power series in a on J(,. We know, in 
principle, that any representation of (12) and (13) 
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must satisfy (3) and (5) with some real numbers 
{Oi I i = 0, 1,2, ... }. We now verify explicitly that 
this is the case. 

We apply the expression (14) for b, with OCi given by 
(27), on the vector In + 2) to obtain 

bin + 2) = iOCi [n! (n + .2)!]t In) 
,=0 (n - ])! 

Now, 

1 n ; (-1)'-1' [2r + 3 + (-1)rJt 

= 2 '~r~r! (j - r)! (r + 2)(r + 1) 

[n! (n + 2)!]t i9 I ) 
X ern 

(n - j)! 

= ![n! (n + 2)!]t i 1[2r + 3 + (-I)lt 
r=O r! (r + 2)(r + 1) 

n (1),-r 
X ei9r I . - . In). (34) 

i=r(j - r)! (n - ])! 

n (-1)i-r n-r (_1)k 
I . . = z ( = ~nr> 
i=r(j - r)! (n - ])! k=O k! n - r - k)! 

so that (34) becomes 

The unitarity of the resulting U ± on J\, can be explicitly, 
verified by applying ul U± on the general vector In). 

The above U ±( 4>±) will satisfy (31) for any set 4>±. 
To determine the 4> such that 

U±\4>Jb±(O~U±(4>±) = a, 

we apply the inverted equation 

U±(4)~aU±/(4>±) = b±(O±) 

on the general vector 12m + K±) with m > 0. We 
obtain 

(m)! 12m - 2 + K±)ei (4)m-l±-4>m±) 

= (m)t 12m - 2 + K±)ei92m-2+K±, 
so that we require 

Thus, 
m-l 

4>-;' = 4>~ - Z 02i+K±' 
i=O 

with 4>t arbitrary. 
As a special case we explicitly consider the unitary 

operators V±(r; oc) such that 

bin + 2) = ![2n + 3 + (_I)n]tei9, In), (35) where 

which is precisely equivalent to (3) and (5). 

VI. CONSTRUCTION OF THE UNITARY 
OPERATORS U± RELATING b± AND a 

Next we explicitly construct on J\, the unitary oper­
ators U± defined by Eqs. (7) and (8). It follows from 
(31) that U± must satisfy 

U± 1m) = 12m + K±)ei 4>1'± (36) 

for some set {4>t Ij = 0,1,2,···} of real numbers. 
We first construct the U± == U±(4)±) for arbitrary 
{4>t} == 4>± and then determine the specific set {4>,!} 
appropriate to the b± defined by {ot}. 

We can write 
rJ) 

U± = I f3;=a*2i+K±a i P i , (37) 
i=O 

where Pi is the projection operator onto the one­
dimensional subspace of J\, containing Ij). Explicitly 

p. = sin 1T(N - j) 
3 1T(N _ j) . 

Application of (37) to the vector /j), using (36), gives 

(38) 

0; = Os> for s '/= r, 
and 

0; = Or + oc. 

From (3) we see that (r even): 

V:;:\r; oc)b+(O+)V+(r; oc) 

_ {. [Sin 1T(N - r - 2)J} . b (ll ) - exp IOC + v+ . 
1T(N - r - 2) 

Assuming that V+(r; oc) is a function of N, 

V+(r; oc) = V+(N; r; oc), 

we need only solve 

V:;:l(N; r; oc)V+(N - 2; r; oc) = exp { ... }. (39) 

Writing 
V+(N; r; oc) = eiR(N;r;a), 

with R Hermitian, (39) becomes 

sin 1T(N - r - 2) R(N - 2· r· oc) - R(N· r· oc) = oc ----"------<-, , , , 1T(N - r - 2) , 

which has the solution 

R(N; r; oc) 

=oc 
IN - r - 21 + N - r - 2 sin 1T(N - r) 

2(N - r - 2) 1T(N - r) . 
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Thus, V+(r; IX) is given and the general operator 
U+«()+, ()~), defined by Eq. (8), is given by Eq. (11). 
Similar results hold for V_. 

VII. THE IRREDUCmLE ALGEBRA A+ OF 
EVEN POWERS OF a AND a* 

We show that the algebra of operators 

A+ = t~~o ci;(a*)2ia2i} 

is irreducible on Je+. Clearly 10) is cyclic in Je+ for the 
set {(a*)2i, j = 0, 1,2, ... }. Now we show that A+ 
contains the projection A+o onto 10) in Je+. We assert 
that 

and 

N+ 12n) = 2n 12n). (40) 

We have N+ EA+ on .3(,+, the polynomial subspace in 
Je+, because (40) has the following solution: Let 

00 

N+ = ,2c;(a*)2ia2i. 
;=1 

Then (40) implies 

± c; = 1 
;=1 (2k - 2j)! (2k - I)! 

(41) 

(42) 

Multiply9 (42) by ,2~1 (iX)2k-1 on both sides. Then, 
after interchanging the order of the j and k summa­
tions, 

!cj; (iX)2k-~ =! (ix)2k-1 
;=1 k=i(2k - 2)! k=1(2k - 1)! 

or, recognizing the trigonometric functions, 

00 

,2C;(iX)2i-1 cos X = i sin x 
;=1 

and, after multiplication by x sec x on both sides and 
repeated differentiation, 

c· = - -=- - (x tan x)1 ( )i(d)2; 
, (2j)! dx ,,=0 

(43) 

or, in terms of Bernoulli numbers, 

( - );+122i(22; - 1)B2 '-1 
C; = (2j)! '. (44) 

By closure, (41) can be assumed to hold in Je+. The 
I · N N' "to· * ,",,00 (*)2' 2' . re atlOn = + In J\.,+, I.e., a a = £"i=1 Ci a 'a' In 

Je+ implies that A+ is the algebra generated by a2 and 

• This solution is due to D. I. Fivel (private communication). 

(a*)2, since 
00 

[a 2, (a*)2] = 2 + 4a*a = 2 + 4,2c;(a*)2;a2; (45) 
i=1 

in Je+. 
To find the power-series representation of b+ in .3(,+ 

in terms of operators in A+, we use 

and 

We find 

2b!b+ 12n) = 2n 12n) 

00 

b+ = ,2f3;Ca*)2ia2i+2. 
i=O 

n f3' eilJ!n 1 

;~(2n ~ 2j)! = [2(2n + 1)]!(2n)! 

(46) 

and, following an argument similar to that just given, 

where 

(-);( () )2; p(x) I f3 -- - -
i - (2j)! OX cos x "=0' 

00 eilJ!n( ix )2n 
p(x) =,2 !' 

n=O [2(2n + 1)] (2n)! 

"Pn real, arbitrary. 

(48) 

N_ and b_ can be found on their domains in a 
similar way. 

VIII. GENERALIZED BOSE OPERATORS WHICH 
CREATE AND DESTROY k a QUANTA, AND 

THE LIMIT k ->- CIJ 

Results similar to those which we found above for 
generalized Bose operators b == b(2) satisfying 

[N, b(2)] = -2b(2) 

hold for analogous Bose operators satisfying 

[N, b(k)] = -kb(k). 

We sketch the derivation of the coefficients IXJk) for 
the Bose operator 

where 
[b(k), b(k)*] = 1. 

Straightforward calculation shows that 

bb* In) = F(n; k) In) 

and 

where 
b*b In) = F(n - k; k) In), 

F(n;k) = I i[n!(n +.k)!]! IX~k)12. 
;=0 (n - )! 

Thus, the commutation relation (49) requires 

F(n;k) - F(n - k;k) = 1, n ~ k, 

(49) 
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and 
F(n; k) = I + [[n/k]], 

and b(k)*. For each k, the vectors which span the 
Fock space Je(k) == Je of a and a* can be labeled by s 
and t: 

where the symbol [[x]] stands for the greatest integer 
not exceeding x. Now Is, t)(k) = I(s + t)k + t), s ~ 0, -tk ~ t < tk. 

n r:/k ) {I + [[n/k]]}! . ! 3 = e'8n 

j=o(n-j)! n!(n+k)! 

and use of the binomial identity as before yields 

lX~k) = ± (_)1-1 {I + [[I/k]]}! ei81• 

1=0(j - I)! I! (l + k)! 

For the remaining discussion, we choose the phases 
On = 0. We express the integer n as 

n = sk + A, ° ~ A < k, 
where 

s = [[n/k]] , A = n - sk. 

By direct calculation, 

b(k) Isk + A) 

= [F«s - l)k + A; k)]! I(s - l)k + A) 

= {I + [[(s - l~k + AJJt I(s - 1)k + A) 

= Js I(s - 1)k + A), 0 ~ A < k, 

and, similarly, 

b(k)* Isk+A)=(s+I)! l(s+l)k+A), O~A<k. 

Also 

a ISk+A)={(Sk+A)! Isk+A-l), 
(Sk+A)! I(s-l)k+k-l), 

and 

* I 1 {(Sk+A+l)! Isk+A+l), a sk+JI.)= 
(sk+A+l)! I(s+l)k), 

O<A<k, 

A=O, 

O~A<k-l, 

A=k+l. 

The lower cases of these last two equations represent 
"edge" effects which we would like to avoid when 
making a construction to deal with the limit k -+ 00. 

To avoid edges for large k, we define a new decom­
position of the integer n: 

n = (s + t)k + t, -tk ~ t < tk, 
where 

s = [[n/k]] , t = n - (s + t)k, 

and, to avoid further irrelevant complications, we 
assume that k is even. 

We now construct a larger space Je", in which we 
can define operators Band B* which, in a sense to be 
made precise below, are the limit for k -+ 00 of b(k) 

An arbitrary vector 1p(k) E Je(k) has the expansion 

1p(k) = ! ! c!~lls, t)(k). 
.2:0 -!kst<tk 

Such sequences {c!~/} for fixed k form a linear sub­
space of the Hilbert space Je2 of sequences {ca,t I s ~ 0, 
-oo<t<oo}. 

Consider the direct sum 

:fe = EB Je(k). 

k(even) 

An arbitrary vector in .re has the form 

t = EB! ! c!~lls, t)(k). 
k 82:0 -hst<!k 

We define .A(, to be the linear subspace of J£ for which 

lim '" Ic(k) - c(ll12 = 0 k., 8,t 8,t , 
k,l-+ 00 8,t 

where we take C!~) = ° for s, t outside their allowed 
ranges. Since Je2 is complete, the {c!~)} belonging to a 
vector in .A(, converge in Je2 to a sequence {c.,t}: 

lim ! Ic!~l - cs,l = o. 
k-+oo $,t 

The vectors in .A(, can thus be divided into equivalence 
classes labeled by sequences {c.,t} in Je2 , and the 
quotient Je", = .A(,/<9, where <9 is the class labeled by 
the null sequence, is isomorphic to Je2 • A complete 
orthonormal basis in Je", can be labeled by 

Is, t) = class of EB Is, t/k
), 

k 

an arbitrary vector in Je", has the form 

0/ = ! c.,t Is, t), 
s,t 

and the norm in Je", is 

110/112 = ! IC.,l. 
s,t 

Note that 

for the 1p(k) belonging to any vector in .A(, in the equiv­
alence class of 0/. 

With this construction, we define operators T and 
T* on .A(,10 as 

T = EB b(k) and T* = EB b(k)*. 
k k 

10 More precisely, we first define Tand T* on vi(, (') ffi.Xlk), where 
Xlk) == X, and then extend them by closure. All of the operators de­
fined in this section should be understood in this sense. 
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In particular, 

T EB Is, t)(k) = EB (S)f Is - 1, t)(k) 
k k 

and 
T* EB Is, t)(k) = EB (s + 1)1 Is + 1, t)(k). 

k k 

Since T and T* leave l') (\ EBk J\, invariant, they induce 
operators Band B* on Jew, which can be taken as the 
"limits" of b(k) and b(k)* for k -- 00. We have 

B Is, t) = (S)f Is - 1, t) 
and 

B* Is, t) = (s + 1)1 Is + 1, t). 

Note that 

(s', t'l B Is, t) = lim (k\S', t'l b(k) Is, t/k ). 
k~w 

We also define limits constructed from a and a*. 
Let a(k) and a(k)* act on Je(k) via 

a(k) Is, t)(k) = [(s + t)k + t]l Is, t - I)(k) 

and 

a(k)* Is, t)(k) = [(s + t)k + t + 1]1 Is, t + I)(k). 

Because Ila(k) Is, t)(k)11 and Ila(kl* Is, t)(k) II grow with 
k, EBk a<k) and EBk a(k)* do not exist in .A(,. However, 

EB (a(k)/kl ) Is, t/k ) = EB [(s + t) + tk-I]l Is, t - l)(k) 
k k 

"" (s + i)f EB Is, t - l/k
) 

k 

(where ,....., indicates the above equivalence) and, 
similarly, 

EB (a(k)*/kl ) Is, t/k) "" (s + 1)1 EB Is, t + l/k
). 

k k 

The operators 

EB (a(k)/kl ) and EB (a(k)*/kl ) 
k k 

in .A(,10 induce operators Ao and A;:' in Jeoo : 

Ao Is, t) = (s + t)l Is, t - 1) 

and 
Ao Is, t) = (s + t)! Is, t + I). 

In a similar way, the operators 

EB 2k[(a(kl/kl) - (s +i}e~)] 
k 

and 
EB 2k[(a(k)*/kl ) - (s + t)le~l], 
k 

where 

in .A(, induce operators Al and A~ in Jew: 

t 
Al Is, t) = 1 Is, t - 1) 

(s + t) 
and 

Ai Is, t) = t + Ills, t + 1). 
(s + t) 

More generally, the operators 

EB n! k
n 

k t( -t) ... G - n) 

X [a(k) _'1;I(t)( -t) ... (~ - j)(!..)i e(k)] 
kt i=O j! (s + t),-l k 'F 

in .A(, induce operators An and' A: in Jecc : 

and 

* (t + It An Is, t) = f Is, t + 1). 
(s + tt-

The commutation relations among these operators 
can be found straightforwardly. For example, of 
course, 

[R, R*] = 1. 

Some other commutators are 

The operators 

B*B Is, t) = sis, t) 
and 

are Hermitian number operators. Finally, we remark 
that 10, t) are no-particle vectors for Band 10, t) are 
cyclic for polynomials in B* , Ao, and A;:' . 

This construction produces a Hilbert space Jew in 
which, heuristically speaking, operators Band B* 
annihilating and creating infinite numbers of a 
quanta exist together with operators An and A: which 
annihilate and create single a quanta. A construction of 
this kind might be of use in the description of a 
quantized hydrodynamic system with finite average 
density and infinite volume, where operators analo­
gous to Band B* would change the average density 
and operators analogous to An and A: would produce 
local changes in density. 
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IX. CONCLUDING REMARKS 

We can consider the power-series representations 
of the generalized Bose operators b to be generated 
by imposing Bose commutation relations on an 
operator which is equivalent to two a quanta. The 
leading term b ,....., (Xoa2 gives a commutator which is 
not a c-number, and the remaining terms of the 
infinite series are necessary to remove the operator 
terms from the commutator. For applications, the 
first coefficient (Xu which expresses the relation between 
the state b* 10) of one b operator and the state 
a*2 10) of two a operators would be most important. 
The higher coefficients give relations such as 

and, in a more realistic situation, would contain 
information about the interaction between a and b 
quanta, and thus would also be of interest. 

We plan to explore, in the context of a relativistic 
four-dimensional situation, the possibility that an 
unstable particle or resonant state can be described 
by a generalized free field. Assuming asymptotic 
irreducibility (or via Ruelle's Theorem,u just asymp­
totic completeness), this generalized free field should 
exist in the Hilbert space of the in (or out) fields of the 
stable particles of the theory and, indeed, Streit's 
analysis, extended straightforwardly to include in-

l1 D. Ruelle, Helv. Phys. Acta 35, 147 (1962). 

ternal degrees of freedom, guarantees this existence. 
The leading terms in the power-series representation 
of the creation part of a generalized free field repre­
senting an unstable particle will contain the creation 
parts of the out fields of the stable decay products 
together with a c-number coefficient which is the 
decay amplitude for the relevant decay mode. The 
condition that the field of the unstable particle be a 
generalized free field, together with kinematical con­
strai~ts, leads to exact relations among the decay 
amplItudes and a small number of amplitudes for the 
inelastic scattering of the unstable particle by its decay 
products, provided the decay products have nonzero 
mass. For massless decay particles, similar approxi­
mate relations can be found based on the smallness 
of the amplitudes for emission of several massless 
particles. We expect that approximate relations 
between the inelastic scattering amplitudes and the 
decay amplitudes can be found, and that, based on 
these relations, we will be able to test experimentally 
the hypothesis that unstable particles can be described 
by a generalized free field. 
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The existence of solutions of a class of nonlinear boundary-value problems is characterized in terms 
of a linear eigenvalue problem. Bounds and comparison results for solutions are derived. 

1. INTRODUCTION 

Several recent papersl - 3 have studied nonlinear 
boundary-value problems of the form 

y"(x) + r 2(x)y(x) - yn(x) = 0, (1) 

yeO) = ° = y(7T) (2) 

which have arisen in connection with the distribution 
of energy in a nuclear power reactor. The exponent 
n ~ 2 is not necessarily an integer. For simplicity we 
discuss problems with continuous r 2(x) though for 
the most part piecewise continuity would suffice. 

On physical grounds it has been conjectured that 
there is a unique positive solution of (1) and (2). 
Keller has shown3 that, if there is a positive solution, 
it is unique. We shall prove that a positive solution 
exists if and only if the largest eigenvalue of (2) and 

y"(x) + r 2(x)y(x) = Ay(x) (3) 

is positive. Our constructive approach does yield a 
feasible computational procedure, but we are mainly 
concerned with this characterization and some useful 
implications of our proof. 

2. EXISTENCE 

We shall need Keller's result that, if there is a 
positive solution y(x) of (1) and (2), then it is unique. 
A simple argument3 also gives the bound 

° ~ y(x) < RI/(n-I), (4) 

where R is the maximum value of r2(x). Let us corre­
spondingly define p as the minimum value of r2(x). 

Let Al ,hex) be the largest eigenvalue and associated 
eigenfunction of (2) and (3). Because r 2(x) E C[O, 7T] 
it is known4 that YI(X) E C2[0, 7T] and YI(X) > 0 for 
o < x < 7T. Suppose now (1) and (2) have a positive 
solutiony(x) E C2[O, 7T]. Multiply (1) by Yl(X) and (3) 
by y(x), then subtract the resulting equations. Inte­
grating the difference over [0,7T] and using the 

* This work was supported by NSF Grant 5967. 
1 w. L. Ergen, Trans. Am. Nuc!. Soc. 8, 221 (1965). 
2 J. Canosa, J. Math. Phys. 8, 2180 (1967). 
3 J. Canosa and J. Cole, J. Math. Phys. 9, 1915 (1968). 
4 E. L. Ince, Ordinary Differential Equations (Dover Publications, 

Inc., New York, 1956). 

boundary conditions (2), we are led to 

AISo""YlX)Y(X) dx = So"" YI(X)yn(X) dx. 

Both integrals are obviously positive, which implies 
Al > 0. This shows that for a positive solution to 
exist it is necessary that Al be positive. 

Existence and some other useful results will be 
demonstrated by a general method. We can rewrite (1) 
as -y"(x) + a(x)y(x) = [r 2(x) + a(x)]y(x) - yn(x) 
and accordingly define 

Ly(x) = -y"(x) + a(x)y(x), 

F(x, y) = [r 2(x) + a(x)]y _ yn. 

To apply the method we must find curves u(x), U(x) 
such that 

u(x) ~ U(x), for all x, 

u(O) ~ 0, U(7T) ~ 0, 

U(O) 2 0, U(7T) 2 0, (5) 

LU(x) 2 F(x, U(x)), 

Lu(x) ~ F(x, u(x», 

and we must choose a(x) 2 ° such that F(x, y) is a 
monotonic increasing function of y for all (x, y) in the 
set 

S = {(x, y) I ° ~ x ~ 7T, u(x) ~ Y ~ U(x)}. 

It then follows5 that (1) and (2) have at least one 
solution that lies entirely in S; there is a largest 
solution w(x) in S, meaning that if y(x) is a solution 
of (1) and (2) in S, then 

y(x) ~ w(x), for 0 ~ x ~ 7T, 

and the sequence {Vk(X)}, defined by vo(x) = U(x) , 

Lvk(x) = F(x, Vk-I(X», v(O) = ° = V(7T), 

converges monotonically and uniformly downwards 
to w(x): 

w(x) ~ ... ~ vk(x) ~ ... ~ vo(x), for ° ~ x ~ 7T. 

First we wish to observe that if there is a positive 
solution it can always be constructed in this way. To 
see this we note that the trivial solution u(x) = 0 

• L. Shampine, J. Math. Mech. 17,1065 (1968). 
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satisfies the requirements on u. We know that a 
positive solution must satisfy (4) so let us try 

U(x) == Rl/(n-l). 

Now 
of 
- = r2(x) + a(x) - nyn-I ~ 0, on S, oy 

if we only require 

a(x) ~ nR - p > 0. 
Since 

LU(x) - F(x, U(x» = RI/(n-l) [R - r2(x)] ~ 0, 

all the requirements are satisfied. By (4) any positive 
solution lies in S and the general method says it is the 
limit of the {Vk(X)}. 

At this point we still do not know if there is a 
nontrivial solution of (1) and (2). This will follow, 
though, if we can find a u(x) such that u(x) ~ ° and 
u(x) ¢ 0, since the solution in S satisfies y(x) ~ u(x) 
and, hence, cannot be trivial. Pursuing this line of 
thought, we can obtain a useful comparison result. 
Suppose that for some ri(x) the problem (I), (2) has 
a positive solution u(x) and we are interested in the 
problem with r~(x) ~ ri(x) for all x. Then 

Lu(x) = [ri(x) + a(x)]u(x) - u\x) 

~ [r~(x) + a(x)]u(x) - un(x) = F(x, u(x». 

By (4), u(x) ~ U(x) and all the other conditions are 
obvious. Thus it follows that this problem has a 
positive solution y(x) and moreover y(x) ~ u(.t); 
that is, increasing r 2(x) increases the positive solution. 

To complete the existence discussion suppose the 
eigenvalue Al of (2) and (3) is positive. Normalize the 
eigenfunction such that 

Al ~ y~-I(X) and R ~ y~-\x). (6) 

We claim that we can take u(x) = hex). The latter 
normalization condition states U(x) ~ u(x) and the 
former implies 

Lu(x) = [r2(x) + a(x)]u(x) - A1U(X) 

~ [r2(x) + a(x)]u(x) - un(x) = F(x, u(x». 

Thus, existence of a positive solution and a nontrivial 
lower bound follow in the usual way. 

3. EXAMPLES AND APPLICATIONS 

The sequence {vk(x)}, which decreases to the positive 
solution, can be used as a computational procedure 

on calculating vk(x) with a method for linear problems, 
.e.g., finite differences. This is likely to be pretty 
satisfactory until the average value of r2(x) becomes 
large and it becomes necessary to use singular pertur­
bation methods to handle the boundary layer.3 If a 
careful choice of a(x) is made, it may be possible for 
specific problems to compute analytical bounds. We 
shall now develop an upper bound better than (4) 
for all problems. 

Let us use the constant a = nR - p and define 
z(x) as the solution of 

Lz(x) = 0, z(O) = Rl/(n-I) = Z(7T), 

z(x) = RI!(n-O cosh (nR - p)t(x - !7T) . 

cosh (nR - p)tt7T 

Consider U(x) = RI!(n-l) - z(x). Obviously, z(x) > 0, 
so if we use the monotonicity of F(x, y), 

F(x, U(x» - LU(x) ~ F(x, RI/(n-I» - aRI!(n-l) 

= RI!(n-l) [r 2(x) - R] ~ 0. 

Thus, (5) holds for this U(x) and clearly U(O) = ° = 
U(rr). To see that U(x) is an upper bound for a 
positive solution which we suppose exists, let us 
normalize YI(X) such that (6) holds and 

U(x) ~ YI(X) = u(x) 

which can certainly be done. Then the existence 
theorem asserts that 

y(x) ~ Rl!(n-l) - z(x). (7) 

Other authors3 have studied the case when rex) is 
a constant p,. The eigenvalue problem (2), (3) has 
Al = p,2 - 1 so there is a positive solution of (I) and 
(2) if and only if p, > I. 

Since R = p,2, the eigenfunction normalized as in 
(6) is 

YI(X) = (p,2 - I)l/(n-I) sin x. 

This is not only a lower bound for the special case 
r 2(x) = p,2 but, using our comparison result, is also 
a lower bound for the positive solution for any 
r2(x) ~ p = p,2 > 1. Thus (7) with this YI(X) gives 
improved upper and lower bounds for all such 
problems: 

(p - 1)1!(n-l) sin x ~ y(x) ~ RI!(n-l) - Z(x). 
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The equations of motion for N-body syste?1s ar.e usual~y int~gra~ed by means of a central-~ifference 
algorithm. An alternative average force algonthm IS descnbed In this paper. The ~ew method IS shown 
to have both theoretical and practical advantages when compared to the central-difference method. 

INTRODUCTION 

This algorithm was developed to facilitate our 
computer simulation investigations of various radia­
tion-damage phenomena. It has been thoroughly 
tested in situations where most of the interacting 
particles are initially arranged into an ordered lattice 
structure. As the simulation progresses, this ordering 
rapidly decays, so we have every reason to believe 
that it would be equally effective in situations where 
the N bodies are originally randomly distributed. The 
algorithm has been tested in systems where ,....,25 5; 
N < ,....,500. Cost considerations, program running 
tim~, and available memory size are the only apparent 
limitations on N. 

The original Brookhaven National Laboratory 
investigation of radiation-damage events by computer 
simulation 1 has remained the only complete discus­
sion of the criteria which must be satisfied before the 
simulation method can be applied. Their calculations 
utilize the familiar central-difference (CD) method of 
integration. Here, we discuss an alternative integra­
tion procedure, the average force (AF) method, but 
always within the criteria established in the Brook­
haven paper. This algorithm has been mentioned 
in the literature,2 but a detailed presentation of its 
rationale and implications has never been made. 

I. THE PROBLEM 

Consider a system of N interacting bodies which 
move subject to the laws of Newtonian mechanics. 
We assume that the force on the ath member of the 
set Fa is a function of the positions of all of the bodies 
in the system Fa = Fir l , ... ,rn). We further assume 
that this force can be expressed as the sum of pair­
wise interactions between the ath body and all of 

• This work was supported by the Office of Naval Research. 
1 J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, 

Phys. Rev. 120, 1229 (1960). 
2 W. L. Gay and D. E. Harrison, Jr., Phys. Rev. 135, AI780 

(1964). 

the other members of the set: 

N 

F« = 2 F«n(r«n), 
n*« 

ran=ra-rn' 

Although the ath body moves under the influence of 

it will be sufficient for our purposes to examine an 
equivalent one-dimensional problem in which we 
investigate the motion of ma under the influence of 
one component, the ith, of one of the Fan. It will be 
convenient to assume that this force component 
F;a is the strongest force component which m is 
experiencing at that time. The other force components 
exist, but we shall include their effect later. We 
temporarily suppress all indices except i, and write 

(1) 

To simplify the notation we have not indicated the 
explicit dependence of F; upon the positions of all of 
the other bodies in the system, but this dependence is 
always present. As usual, 

(2) 
and 

x;(t) = viet) = dxi(t)/dt. (3) 

We wish to study the numerical integration of Eqs. 
(1)-(3) by finite-difference methods. The integration 
process will be subject to three criteria: 

(1) We require a minimum number of computations 
per time increment !::.t; 

(2) we require a minimum number of time incre­
ments to accomplish a particular displacement; and 

(3) we shall use the energy decrement 

!::.E = I[E(t') - E(t)]/E(t)l, 
where 

E(t) = tmv~(t) + U[xlt), vlt)], 

and U[xi(t), viet)] is the body's potential energy, as a 
measure of excellence for the integration process. 

1179 
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II. THE CENTRAL-DIFFERENCE METHOD 

In finite-difference form, Eqs. (1)-(3) become, when 
(1) and (2) are combined, 

m-1F;[xi(t)] ~ [v;(t + M/2) - v;(t - /).t/2)]//).t, (4) 

viet + /).t/2) == xi(t + /).t/2) 

~ [Xi(t + /).t) - xi(t)]//).t. (5) 

Equation (4) can be immediately rearranged to read 

vi(t + /).t/2) ,....; viet - /).t/2) + Fi [xi(t)]m-1/).t, (6) 

while, after rearrangement and substitution from Eq. 
(6), Eq. (5) becomes 

xi(t + /).t),....; Xi(t) + vi(t - /).t/2)/).t 

+ F;[xi(t)]m-1/).t 2. (7) 

When initial values V iO = vi(to - /).t/2) and XiO = 
x.(t) and a timestep /).t have been established, Eqs. 

• 0 . 

(6) and (7) comprise a consistent self-regeneratmg set. 
From a practical point of view, this integration 

algorithm is inconvenient if we wish to go ?eyond the 
basic determination of Xi(t) and consIder other 
physical quantities, because it does not give simultane­
ous determinations of position and velocity. Momen­
tum conservation can be built into the N-body system, 
but determination of the total energy E(t) is compli­
cated by this property of the method. 

This algorithm is based upon the tacit assumption 
that vi(t + /).t/2) is in some sense the mean of viet) 
and vi(t + /).t), so the "average" velocity is used in 
calculating the displacement /).xi = xi(t + /).t) - xi(t!. 
Similarly, the force determined at time t, F[x;(t)], IS 
the "average" force between xi(t - /).t/2) and 
xi(t + Ilt/2) which is required to determine the change 
in velocity. The AF algorithm described in the next 
section is mathematically less rigorously justified than 
the CD algorithm, but it is designed to exploit the 
"average" nature of the various quantities required 
in the integration in ways which overcome the 
practical difficulties of the CD method. 

1II. THE AVERAGE· FORCE METHOD 

In the discussion of the AF method we use a time­
step /).T. Thus, formulas which contain /).t are CD 
formulas, while AF results depend upon /).T. Later 
we shall show that /).t and /).T can be mathematically 
related by direct application of the criteria of excel­
lence presented above. 

The AF algorithm is based upon the Taylor's series 
expansion of xi(t + /).T) about xi(t). This expansion 
gives 

xi(t + /).T) = Xi(t) + vi(t)/).T + ai(t)/).T2/2 
+ a;(t)/).T3/6 + .... 

In a constant-force problem, all coefficients of /).Tn, 

with n » 2, vanish; so we define /).v i such that 

xi(t + /).T) = Xi(t) + vi(t)/).T + /).vi/).T/2. 

With this definition, /).v i is the average charge in 
velocity during the internal /).T. We now use /).v i to 
introduce an average force (Fi): 

/).vi == (Fi)m-1/).T. (8) 
Then, 

Viet + /).T) = V;(t) + (Fi)m-1/).T (9) 
and 

xi(t + /).T) = xlt) + [Viet) + (Fi)/).T/2m]/).T (10) 

are the AF equivalents of Eqs. (6) and (7). 
We obtain two advantages by this trivial modifica­

tion of the CD method: 
(1) the position and velocity are determined 

simultaneously, and 
(2) physical intuition can be used to develop 

approximate values for (Fi) which will improve the 
precision of the numerical integration process. 

The major conceptual difference between the CD 
and AF methods can be summarized as follows: In 
the CD method, the force is exactly known but the 
equations [Eqs. (6) and (7)] are only asymptotically 
correct, while in the AF method the equations [Eq. 
(9) and (10)] are exact, but the average force must be 
determined by an ancilliary argument. 

Equations (7) and (10) can be converted into 
mathematically identical forms. To see this we make 
a Taylor'S series expansion of viet - /).t/2) and retain 
only two terms: 

viet - /).t/2) -=- Viet) - (/).t/2)vi(t). 

When this result is used in Eq. (7), together with Eq. 
(1), to eliminate Vi' we obtain 

xi(t + /).t) = Xi(t) + /).t{vi(t) + F;[Xi(t)]/).t/2m}. 

(11) 

Equations (10) and (11) are formally equivalent, 
except that (Fi) and Fi[Xi(t)] must be interpreted 
differently. This formal similarity first led us to 
explore the AF method. 

IV. DETERMINATION OF <Fi > 

For the moment, presume that the function 
Fi[Xi(t)]!m is known exactly. Figure 1 shows four 
possible graphs of Fi[Xi(t)]/m vs xi(t). In each case, 
the area under the curve is /).v i , while the area enclosed 
by the broken-line rectangle is the /).v i obtained by a 
CD computation. In this section, we presume that 
/).v i is "small" compared to viet), but will defer a 
definition of "small" to a later section. 
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Let us rewrite Eq. (10) in the form 

~Xi == xlt + ~T) - xi(t) = vi(t)~T + ~vi~T!2, 
and look at one of the sections of Fig. 1 in more 
detail. In Fig. 2, the line labeled x; indicates the value 
of ~Xi obtained when ~Vi is neglected. We note that 
this position is completely independent of Fi(t)!m. 
Further, we note that if ~Vi is "small" compared to 
Vi' the difference Xi(t + ~t) - x; will always be 
"small" compared to ~Xi . 

It is convenient to think of each timestep as a 
two-stage process: 

(1) Move the body to x;(t + ~T), the new position 
produced by 

x;(x + ~T) == x;(t) + v;(t)~T, 
(2) Compute the additional displacement ~vi~T/2 

as accurately as possible. Because the force functions 
used in this type of calculations is not pathological, 
we may presume that F[x'(t + ~T)] is a better 
approximation to F[x(t + ~T)] than is F[x(t)]. Thus, 
if we define a first approximation to ~Vi by ~v;l) = 
F[x(t)]~T/m, it seems reasonable that 

~v?) = {F[x'(t + ~T)] + F[x(t)]}~T!2m 
is a better approximation to ~Vi' This, of Course, 
presumes that ~T is chosen sufficiently small that a 
trapezoid-rule integration of the force to obtain ~Vi 
is a reasonable approximation. 

This series of approximations can conveniently be 
carried one step further. We define 

x;(t + ~T) = x;(t) + vi(t)~T + F;[x;(t)]~T2/2m, 
(12) 

which is the location the body would reach if Fi 
remained constant for the period ~T. We note that 
x1(t + ~T) = xi(t + ~t), the CD result calculated 

x(t) x(t'l>T) 

c 

x(t+~T) 

x(t) x(t.~T) 

D 

x(t) x(t+~T) 

FIG. 1. The force 
can change in various 
ways in the course 
of a single timestep. 
Here the actual force 
is compared with the 
force used in a CD 
calculation (broken 
line) for four possible 
cases. 

FIG. 2. Most of the dis­
placement in a single 
timestep is the result of 
the velocity which exists :'l 
at the beginning of that & 
timestep (v;(t)/lT). Thus 
Fi[X'(t + /IT)] is a good 
first approximation to 

F.[x(t + /IT)]. 

X, I+AT) .,(I+AT) 

with Vi = viet) instead of v;(t - ~tI2). Thus, 

x:(t + ~T) 
is effectively equivalent to the position at the end of 
the timestep as computed by the CD method. In 
terms of this position, we define a third approximation 
to ~Vi by writing 

~V:3) = {Fi[x;(t + ~T)] + Fi[X;(t)]}~T/2m. (13) 

This is equivalent to defining 

(F;) == t{Fi[X;(t + ~T)] + Fi[X;(t)]}. (14) 

The steps of the AF method may be summarized as 
follows: 

(1) make a preliminary calculation of the new 
position using Eq. (12); 

(2) determine the force at that position; 
(3) average the force calculated in step 2 with 

Fi[Xi(t)]; and 
(4) use the average force calculated in step 3 to 

compute viet + ~T) and xi(t + ~T) from Eqs. (9) 
and (10). 

It is immediately apparent that the AF method will 
make an improvement in Vi calculation for cases 
a and b in Fig. I, and it will be no less accurate than 
the CD method in cases c and d. However, it appears 
to be much slower to implement on the computer 
because a single AF timestep requires almost as many 
computations as two CD timesteps. We shall now 
show that, although additional calculations are 
required per timestep, the AF method requires fewer 
timesteps for a given total displacement with a smaller 
energy decrement. 

V. DETERMINATION OF /IT 

A. Comparison of t!.T and t!.t 

We use the following criterion to establish a 
relationship between ~t and ~T, the timestep in the 
two methods: 
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A timestep must terminate when the difference 
between the force at its end and the force used in the 
integration equals or exceeds a preset value. 

For the moment we do not attempt to establish the 
value of this difference, but we do require that the 
same value apply to each method. Then we can write 

Fi[X(t + Llt)] - F;[x(t)] = F;[x(t + LlT)] - (FJ. 

(15) 

If we now substitute the definition of (Pi)' Eq. (14), 
into Eq. (15) and expand 

and 

Fi [xi(t + Llt)], 

F;[xi(t + LlT)], 

Fi[x:(t + LlT)] 

in Taylor's series, after some algebra, we obtain 

[xi(t + Llt) - xi(t)] -' (dY) 
dXi t 

= [xi(t + LlT) - x;(t)] -' (dY) 
dx; t 

- t[xi(t + LlT) - Xi(t)] -' , (16) (dY) 
dXi t 

which is correct to terms of the order of Xi. To this 
same approximation, we find that 

and 

xlt + Llt) - x;(t) = v;(t - Llt/2)Llt, 

x;(t - LlT) - x;(t) = v;(t)LlT, 

xi(t - LlT) - xlt) = vi(t)LlT. 

When these results are substituted into Eq. (16), we 
obtain 

viet - Llt/2)Llt = v/t)LlT/2. (17) 

But we have already assumed that Vi does not make a 
large change in one timestep, so, approximately, 
LlT .-:... 2Llt. We expect that the AF method will tolerate 
a timestep, which is twice the CD timestep, and still 
produce roughly equivalent accuracy. This property 
of the AF method has been extensively tested over a 
broad energy range, 0.001 eV to 10 keY, and has 
always been found to hold true. 

Actually, when LlT = 2Llt, we find that AF method 
gives a considerably smaller energy decrement in 
'""'90 % of the cases tested and never gives a large 
decrement. We can justify this property graphically. 
Figure 3 shows the work done, as calculated by each 
method, in two cases. In case a, we see that the CD 
method under-estimates the work by an amount 
A = Al + A 2 ; in case b, it over-estimates the work 
by an amount B = Al + A2 • In both of these cases 

FIG. 3. The vertical hatching is the work as approximated by the 
AF method, the horizontal by the CD method. The curvature in 
the force curve is somewhat larger than we might expect in a normal 
timestep. In both cases the AF method gives a better approximation 
to the work done during the timestep (the area under the curve) than 
does the CD method. 

the AF calculation gives almost exactly the correct 
amount of work, because F is changing almost linearly 
with x. In cases c and d, the AF calculation is also 
in error by roughly the same amount as the CD 
calculation and, in extreme cases, it is actually possible 
for the CD calculation to be more accurate. In actual 
operation cases a or b occur ......,90 % of the time, so the 
AF method almost always gives better results than the 
CD method when the computation is extended over a 
number of timesteps. Identical test situations run over 
100 AF timesteps (200 CD timesteps) show that the 
energy decrement is noticably smaller in the AF than 
in the CD calculation. To make quantitative compari­
sons between the two methods we must examine the 
relationship between the energy decrement and the 
timestep length. 

B. Choice of ilT 

It is convenient to define LlT in terms of the maxi­
mum displacement component of the most energetic 
body in the system. We first rewrite Eq. (10) in the 
form 

so that 
LlT = LlXJ(Vi + (Fi )LlTf2m). (18) 

In normal applications Vi » (Pi)LlT/2m, or the com­
putation is not accurate, so we may approximate 

(19) 

Good energy conservation during a timestep ulti­
mately depends upon the change in force during the 
timestep. Once the maximum acceptable force change 
is assumed, the displacement which will produce that 
change is readily computed. Call this maximum 
acceptable displacement D. In these computations it 
is simple to determine the body with largest kinetic 
energy T m at the end of each timestep. Then from 
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Eq. (19) we define 

ilT = D(2m/T m)-t. (20) 

There are two safety factors built into this definition 
of ilT: 

(1) it is based upon the most energetic body, so 
the single timestep displacements of all other bodies 
will be less than D, and 

(2) only very rarely will the velocity of the most 
energetic body be parallel to a coordinate axis; so 
generally any component of its displacement will be 
less than D. 

In cubic lattices the lattice unit (LU), where 1 LU = 
lao, the cubic lattice parameter, is a convenient 
length unit. We have empirically determined that all 
D < 0.1 LU give essentially the same trajectories 
and energy decrements of the order of 1 % for a 
system of 50 or more bodies and 250 timesteps. 
Smaller values of D decrease the energy decrement, 
but do not affect the trajectories very much. In 
comparison, D = 0.2 LU may give decrements as 
large as 10% after only 25 timesteps. 

In lattice-relaxation studies, we sometimes deal 
with systems where v« (Fi )/2m. When this is the 
case, we determine the maximum force acting on any 
body F m and define 

(21) 

Although this is the most satisfactory approach dis­
covered to date, Eq. (21) can lead to large errors if 
finite-range forces, or potentials, are used in the 
system. 

VI. FINITE-RANGE POTENTIALS 

In the numerical integration of the equations of 
motion for large numbers of interacting bodies, it is 
usually not practical to include long-range forces. 
We have performed computations which reach to the 
fifth nearest-neighbor in the face-centered cubic lattice 
(,-....,3.4 LU) where each body may interact with as 
many as 64 of its neighbors. Even with an IBM 300/67 
this is impractical except for an occasional special 
case, and interaction ranges R < 2.0 LU, which in­
volve only 18 other atoms, are more realistic. 

For this reason, every computation must include a 
means of carrying out the integration of the equations 
of motion for timesteps in which the force "turns on" 
in the middle of the timestep. The method outlined 
below is feasible with the AF algorithm and has been 
found to significantly improve the energy conserva­
tion, that is, reduce the energy decrement, in all cases 
tested to date. 

FIG. 4. When the 
force "turns on" just 
at the beginning of 
the timestep, the AF 
method computes the 
change in potential 
energy, A in each dia­
gram, quite accu­
rately. 

E xr"+.t.Tl 
!------x,III------l 

R 

force 

With short-range potential functions it is often more 
convenient to truncate mathematically the potential 
at some separation R, the range, than to construct 
a function which vanishes at this separation. When 
VCr) is truncated at R, so that VCR) is finite, we can 
shift the zero of potential by an amount VCR) and 
define an eroded potential 

V.(r) == VCr) - VCR) 

which vanishes at r = R. This charge does not affect 
theforceF(r) = -\lV(r) = -\lV.(r),forr < R, but 
it too must be truncated at r = R. The difficulties 
introduced by the "turning on" of the force at r = R 
occur whether VCr) is truncated or not. 

Let us now examine a single binary-collision event 
in detail. In Fig. 4, the bodies have just made contact 
at the end of the last timestep. We are concerned with 
the preliminary displacement xiCt + I:!T), because we 
would like the definition of (Fi) to compensate for 
the "turn on" process. On both the potential and 
force diagrams of Fig. 4, A is the work done during 
the preliminary displacement and xi(t + I:!T) is 
approximately the final separation at the end of the 
timestep. Under these conditions the normal defini­
tion of (Fi) by Eq. (14) introduces no difficulties. 

Now consider the situation shown in Fig. 5. We 
note that the CD method is completely unsuitable, 
because it would assume zero force for the entire 
timestep. The average force as defined by Eq. (14) is 
somewhat more realistic, but the AF integration may 
also contain significant errors in the approximate 
integration. 
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potentiol 

'~~:~"i~ 
, ...-
: A '==== x,·(t_IIT) 

f-t--------- x,(1) ---------0{ 

force 

FIG. 5. When the force "turns on" during the timestep, we deter­
mine a first approximation to A from the change in potential energy, 
and then define (Fi) == AI t!J.Xi' 

We can make a better approximation to (Fil under 
these conditions if we note that x;(t + dT) is 
approximately the final separation, so V(xn should 
be approximately the final potential energy. Energy 
will be approximately conserved if the work done 

by the body during the timestep approximately equals 
the charge in potential energy. This requires that 

(Fi)dxi = A_ (22) 

This is immediately accomplished if we define 

(F) - - Vex!) - VCR) R - D < * < R 
i - * R' Xi' Xi -

where D is the maximum displacement defined in 
the last section_ If the potential is eroded, this reduces 
to 

(F.) = - Vixt) R - D < x:t' < R 
, , x* - R' ,. , 

Programs run with this modification have a smaller 
energy decrement than identical situations run as an 
unmodified AF integration. The improvement is 
particularly noticeable in test cases which approach 
the assumed limits of the AF-method approximations. 

VII. SUMMARY 

We have shown that it is possible to carry out the 
numerical integration of the classical equations of 
motion for N bodies by an average-force algorithm 
and have shown that this algorithm has both theoreti­
cal and practical advantages when compared with the 
central-difference algorithm which is currently in 
general use. 
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In this paper, the canonical wave equation and auxiliary conditions for a massless particle with 
arbitrary integral or half-integral spin s are derived from a symmetric spinor formulation. The wave 
equation is solved for the multipole solutions using the appropriate parity operator for each spin. 
Finally, the characteristic hypersurfaces for the wave equation are derived and found to agree with that 
of the photon. The special cases of spins one, three-halves, and two are detailed in conclusion. 

I. INTRODUCTION 

It is well knownl that one can write Maxwell's 
equations for the photon as a simple matrix equation 
and auxiliary condition. The equation is (the units 
are Ii = c = 1): 

S . P1ji(x) = i .E.Vi(x), (1) ot 
where 1ji(x) is a three-component wavefunction with 
elements 

(2) 

and P is -iV. & and $ are the (real) electric and 
magnetic fields and x = (x, it). The S are the repre­
sentations of spin-one matrices 

(3) 

The auxiIiarycondition specifying the transverse 
nature of the electric and magnetic fields may be 
written as 

~ Vik(X) = O. 
aXk 

(4) 

This condition insures that the photon wavefunction 
contains only helicity components ± 1 as is required 
for a massless particle. 2 

The construction of the above theory for the photon 
follows from a symmetric spinor formulation of the 
theory of a free particle with arbitrary mass and spin3 

specialized to zero mass. In particular, for spin one, 
the spin or equations are 

(5) 

where CPPIP2 is a lower-dotted symmetric two-index 
spin or and 0(, fJl' fJ2 run from 1 to 2, so there are only 
three independent components which are labeled 

* Work supported in part by the U. S. Atomic Energy Commission. 
1 R. H. Good, Jr., Phys. Rev. 105, 1914 (1957). This paper con­

tains earlier references on the subject. 
2 E. P. Wigner, Rev. Mod. Phys. 29, 255 (1957). 
3 D. L. Weaver and D. M. Fradkin, Nuovo Cimento 37, 440 

(1965). The spinor notation of this paper is followed. 

according to 

CPu == Xo, CP2i == Xl' CP22 == X2' (6) 

The mixed-index spinor arxPl is related to the four­
vector gradient a/ax!' by 

:laPl _ () a 
u - - (f!' a/ll-' 

ax!, 
(7) 

where, except for 0( and {31' {32' ... , the Greek indices 
run from 1 to 4 and where the (fi are the Pauli matrices 
and (f4 is i times the 2 x 2 identity. The four equations 
(5) can be written in the form 

[a. V + :J[~:J = 0, 

[a. V + :tJ [~:J = o. (8) 

If one now defines the wavefunction '1jJ with three 
components given by 

'1jJk = [(k ~ 1) J\k-l' k = 1,2,3, (9) 

where 

(
m) m! 
n =n!(m-n)!' 

then Eqs. (8) can be written as 

S . P'1jJ(x) = i ~ '1jJ(X), at 

(10) 

(11) 

where the S are the spin-one matrices in a representa­
tion with S3 diagonal. There are four equations (8) and 
only three equation (7), so the remaining equation is 
considered an auxiliary condition on '1jJ. The auxiliary 
condition takes the form 

1185 
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Equations (1)-(4) may be reproduced by noting that 

where 

and 

iii = UV', 

o 
o 

-~2 

~1] 
I , 

o 

S = U8Ut. 

(13) 

u-l = U f , (14) 

(I 5) 

The above considerations for spin one may be 
carried out for arbitrary integral or half-integral spin 
and zero mass and this is done in Sec. II to yield the 
wave equation for a massless particle with arbitrary 
spin previously discussed by Hammer and Good.4 

In Sec. III this wave equation is used to solve the 
multipole-radiation problem for arbitrary spin, and the 
eigenstates of the two types of parity operators for 
massless particles are constructed. The characteristic 
hyper surfaces are found in Sec. IV and some special 
cases are discussed in Sec. V. 

II. WAVE EQUATION FORMULATION 

The construction for spin one may be extended to 
the general case. The spin or equations are 

(16) 

where 4> is completely symmetric and so has 2s + 1 
independent components. Note that the identity 

oa/)a(h = -blJtlJ ~ ~ (17) 
oXIl oXIl 

together with Eq. (16) shows that each component of 
the spin or satisfies the equation 

[ 

2 02J 
V - ot2 4>Pl"'(12. = 0. (18) 

The 2s + 1 independent components of 4> are defined 
by 

Xo == 4>ii···1, Xl == 4>21···1> •.• , X2s = 4>22···2' (19) 

One can rewrite the 228 equations (16) in the form 

which is a set of 4s coupled, linear, homogeneous 
first-order differential equations for the independent 
components. There are, in addition, 228 - 4s equa­
tions which are identical to some ofEqs. (20). Defining 

, c. L. Hammer and R. H. Good, Jr., Phys. Rev. 108, 882 (1957). 

the wave function V' with 2s + 1 components by 

V'k = [(k ~ 1) J\k-l' k = 1,2,' ", 2s, (21) 

one may rewrite Eqs. (20) as 

18 • PV'(x) = i.E. V'(x) (22) 
s ot 

and 

[(k ~ 1) r! (O~l + i o~JV'k - 2[ (~) r! 0~3 V'k+l 

- [( 2s )]-!(':l0 - i ~) V'k+2 = ° (23) 
k + 1 uXl OX2 

with k = 1,2,' .. ,2s - 1 here. Now, the 8 are the 
(2s + I)-dimensional spin matrices in a representa­
tion with S3 diagonal. Equation (22) is the wave equa­
tion discussed by Hammer and Good.4 One .t;n.ay see 
the effect of the auxiliary conditions (23) very clearly 
by considering for V' a plane-wave solution propa­
gating in the z direction: 

V'(x) = U(P) exp [i(P3z - Et)]. (24) 

Then the auxiliary conditions state that U(P) repre­
sents a physical state only if [U(P)]n = 0, for n = 2, 
3, ... ,2s. Thus, physical states are represented by 
U(P) = {[U(P)]l' 0, ... , [U(P)]2s+l}' the two linearly 
independent solutions [U(P)]l = 1, [U(P)]2S+1 = 0, 
and [U(P)]l = 0, [U(P)]2s+l = 1, corresponding to 
E = +IP31 and E = -IP3 1, respectively. 

Some results taken over without any proof from 
Ref. 4 are that KCP is the space-reflection operator for 
V' and that J is the total-angular-momentum operator, 
where 

KV'(x, t) = V'*(x, t), (25) 

PV'(x, t) = V'( -x, t), (26) 

C8C-l = -8*, (27) 

(KCP)2 = (-1)28, (28) 
and 

J i = €iikXj( -if) + S':' (29) 
x k 

III. MULTIPOLE SOLUTIONS 

The problem to be solved in this section is to find 
solutions 'lp(x, t) which have a definite, nonzero fre­
quency, which satisfy Eq. (22) everywhere except at 
the origin and which, far from the origin, are out­
going waves. One may write 

'lp(x, t) = w(x) exp (-iEt), (30) 
so that 

s-18· Pw(x) == Hw(x) = Ew(x) (31) 
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for the corresponding eigenvalue problem. The eigen­
value E must be nonzero and w(x) must behave 
correctly, asymptotically, so that 'Ij!(x, t) becomes an 
outgoing wave. One wants to find the common eigen­
functions of the commuting set of operations H, S2, 
J2, J3 • The simultaneous eigenfunctions of J2, S2, and 
J3 are the spinor spherical harmonics 'Y1,I,.(O, cp) 
which satisfy the equations 

J2'Y:i':I,. = J(J + l)'Y:i':I," (32) 

J3'Y:i':I,. = M'YJl,s> (33) 
and 

S2'Y1-'\. = s(s + l)'Y:r.z,., (34) 

where J2, J 3, and S2 on the left are operators and J and 
s on the right and in the subscripts form the eigenvalue. 
For spin one, the 'Y1,l,1 are the vector spherical har­
monics as given, for example, by Blatt and Weisskopf5 

and in general, the spinor spherical harmonics are de­
fined by 

'YJl .• CO, cp) 

= L (Imzsm. I JIsM) Yz,m/(), cp) Is, m.J, (35) 
ml+m.=lII 

where Yl,ml are spherical harmonics and Is, m.> are 
the (2s + i)-dimensional eigenvectors of S2 and S3' 
(See Appendix A for some properties of these func­
tions.) The (lmlsm.\ JIsM) are Clebsch-Gordan 

coefficients6 and have the symmetry property 

(lmlsm. \ JIsM) 

= (_l)l+S-J(l - mzs - ms \ Jis - M). (36) 

The quantum number J is always greater than or 
equal to s and otherwise can take the values s, 
s + i, ... ; M may be any of the 2J + 1 values -J, 
-J + 1, ... ,J; I is an integer in the range J - s ~ 
I ~ J + s. The reason for J ~ s is discussed in 
Appendix B. 

One weighs each spinor spherical harmonic with a 
radial function and makes the substitution 

J+s 
w;; .J.M(X) = L h1(r)'Y:i':z.s«(J, cp) (37) 

I=J-. 

into Eq. (31) where the 2s + 1 radial functions (with 
the other indices suppressed) are to be determined. 

Using the formulas of HilF for the derivatives of 
radial functions times spherical harmonics, Eq. (31) 
gives the equations for the radial functions: 

(i/2s)a~~sdf-s+2(hJ_8+1) = EhJ_s> (38) 

(i/2s)a~::S_ld:!.+S-1(hJ+s-1) = EhJ+s , (39) 

(i/2s)[a~;d~\hl_l) + af·sd~2(hl+1)] = Eh z, (40) 

where J - s + 1 ~ I ~ J + s - 1. The coefficients 
at·s are defined by 

aJ •s == [(I + s + J + 2)(1 + s - J + 1)(1 - s + J + 1)(J + s - I)]! 
I (21 + 1)(21 + 3) 

(41) 

and 

d~ == d/(dr) ± Ilr. (42) 

The solutions of the radial equations are found to be 

where 

p == lEI r (44) 

and H(l), H(2) are the first, second Hankel functions, 
respectively, in the notation of Jahnke and Emde.S 

To get outgoing waves one uses the first Hankel func-

to get the relations 

d)p-!H~~!(p» = -p-!H~~!(p), (46) 

d:(p-tH~:"!(p» = p -!H~:"~(p). (47) 

Substituting Eq. (43) into Eqs. (38), (39), and (40), 
and using the relations (46) and (47), one finds the 
following equations for the C l : 

tion when E is positive and the second when E is and 
negative. One uses the recursion relation of the Hankel 
functions 

(i/2s)a~'!.SCJ_S+l = eCJ_s> 

-(i/2s)a~::'_lCJ+S_l = eCJ+s, 

(48) 

(49) 

(50) 

~ H~·2)(p) = H~l.:...~(p) - dd H~·2)(p) 
P P 

= H~-i-~(p) + ~ H~·2)(p) (45) 

5 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, New York, 1952), Appendix B. 

• A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, N.J., 1957). 

7 E. L. Hill, Am. J. Phys. 22, 211 (1954). 
8 E. Jahnke and F. Emde, Tables of Functions (Dover Publications, 

New York, 1945), Chap. VIII. 
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One solves these equations for the Cl in the cases of and 
interest, where € is equal to E/IEI. KCP(H/IHl)ipmag = (-I)J-fipmag, 

KCP(HIIHIWe"Iec = ( _1)J+t ipelec' 

(60) 

(61) 
The solutions of Eq. (31) are then given by 

J+s 
~ -t (1.2) M -iEt 

'Ip(X, t) = k CIP Hl+~ (p)'Y J.l..(fJ, cp)e . (51) 
I=J-s 

For large values of its argument, H(1,2) behaves like 
p-ie±iP. To get outgoing waves, the first Hankel 
function is to be used when E is positive and the 
second when E is negative. The complete solutions to 
the problem are then 

'Ip±(J, M, s, lEI; x, t) 
J+s 

= ~ CIP-tH:~!)(p)'Y~'\sexp (=fi lEI t). (52) 
I=J-s 

The upper (lower) signs are for positive (negative) E 
solutions and the first (second) kind of Hankel func­
tion is to be used with them. 

In analogy with the photon, the definite-parity 
solutions (the "electric" and "magnetic" multipole 
solutions) are given for the integral-spin theories by 

'lpmag{J, M, s, lEI; x, t) = 'Ip+ + (-l)JKCP'Ip+, (53) 

'lpclec(J, M, s, lEI; x, t) = i'lprnag(J, M, s, lEI; x, t), 

(54) 

where the operators K, C, and P are defined in Eqs. 
(25), (26), and (27). Using Appendix A, one sees that 
the effect for any spin of operating with KCP on 
'Ip± is 

KCP'Ip±(J, M, s, lEI; x, t) 

= (i)2(S-J+M)'Ip'f(J, -M, s, lEI). (55) 

The motivation for the form of Eqs. (53) and (54) is 
that 

KCP'lprnag = (-l)J 'lprnag' (56) 

KCP'lpclec = (-l)J+1'1pelec, (57) 

and that for spin one the solutions are identical (up to 
the representation of spin matrices) to those discussed 
in detail for the photon by Good. 9 For the half­
integer spin theories, the linear combinations of Eqs. 
(53) and (54) do not give definite parity solutions. In 
fact, one must use, for the half-integral spin theories, 
instead of KCP, the operator KCP(HIIHI). With this 
operator one has, for the half-integer spin theories, 
the eigenstates iprnag and ipelec, where 

ipmag = 'Ip+ + (_l)J-'It KCP(H/IHI)'Ip+, (58) 

ipelec = iipmag, (59) 

9 R. H. Good, Jr., Ann. Phys. (N.Y.) 1, 213 (1957). 

The two possibilities for the parity operator for 
massless particles correspond to the duality of charge­
conjugation operations discussed recently by Weaver.lO 

IV. CHARACTERISTIC HYPERSURFACES 

In this section the problem considered is that of 
finding the characteristic hypersurfaces associated with 
the wave equation (22) for massless particles with 
arbitrary spin. The physical motivation for considering 
such hypersurfaces is discussed, for example, in Ref. 
11. The problem is to find the hyper surfaces over which 
a discontinuity can occur in the first derivatives of the 
solutions of the wave equation. 

Let h be any hyper surface given by 

t = f(x) (62) 

and let ip be 'Ip, the solution of the wave equation 
restricted to h, so that 

ip(X) = 'Ip(x,f). (63) 

Then, on h, one has 

(64) 

and so 

1. S. Pip = 1. S· P'Ip + (~S. Vf)~ 'Ip. 
s s IS at 

(65) 

Making use of the wave equation, one reduces Eq. (65) 
to 

1. S . P1j! = i(1 - 1. S· Vf)~ 'Ip. 
s s at 

(66) 

One must consider two cases. First, if the determinant 
of 1 - S-1S· Vf ¥: 0, then the inverse exists and one 
may calculate (a/ot)'Ip, (a2/ot2)'Ip, etc., in terms of 
initial data and so in this case h is not a character­
istic hypersurface. The second and most interesting 
case is when the determinant is zero. Then h is a 
characteristic hypersurface, the equation being 

det (1 - S-1S . Vf) = 0. (67) 

For spin one, this gives the equation 

(Vf)· (Vf) = 1, (68) 

which is the equation of the characteristic hypersur­
faces for Maxwell's equations. For arbitrary spin, one 

10 D. L. Weaver, Nuovo Cimento 55A, 377 (1968). 
11 R. Adler, M. Bazin, and M. Schiffer, Introduction to General 

Relativity (McGraw-Hill Book Co., New York, 1965). 
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gets 

det (l - S-lS· Vf) oc [(Vf)2 - 1] 

X {(Vf)2 - [sl(s - 1)J2} ... [(Vf)2 - (S/€s)2], (69) 

where €s = HI) for s = half-integer (integer). So for 
h to be a characteristic hypersurface, one finds that 
f must satisfy n. [(Vi? - (~n = O. (70) 

For s = t, 1, there is only one possibility, which is 
Eq. (68). For higher spins, one gets equations of the 
form 

(Vf)2 - {3-2 = 0, (71) 
where 

{3 = (m/s) ::;; 1. (72) 

The ba&ic solution of Eq. (71) is 

1[ 3 J~ f = {J i~(Xi - aj )2 (73) 

and h is then given by 

1[ 3 ]! t - to = - L(X; - ai )2 (74) 
. {3 i=1 

or, equivalently, by 
3 

{32(t - to? - L (Xi - ai? = 0, (75) 
1=1 

which corresponds to a spherical wavefront expanding 
with velocity {3c. The extra hypersurfaces, those 
corresponding to {3 < 1, are not allowed by the 
auxiliary conditions (23) which together with Eq. (22) 
form a complete theory. One may easily see this by 
finding the characteristic hypersurfaces of Eqs. (20). 
One finds only the surfaces with {3 = I, as expected. 

V. SPECIAL CASES 

We list here the radial functions for spins I, t, 2. 
Results for spins 1 (photon) and 2 (graviton) agree 
with those of Refs. 12 and 13: 

Spin = 1: 

h(kl J~ -lH(kl 
J+1 = € P J+~' 

h~l = i(2J + l)~p-~H~~:b 
h~~1 = -€(J + l)~p-iH~!.t· 

Spin = t: 
h~!.~- = €[3(J + l)]tp-!H~!.l' 
h~~! = -3i/tp-!H~I, 
h(kl , = _3€[(2J - l)(J + I)J1 -lH(kl 
In 2J+3 p J+1' 

h(k) 3 = .[3J(2J - l)Jl -lH(kl 
J+2 I P J+2' 

2J + 3 
---

12 R. H. Good, Jr., Lectures in Theoretical Physics (University 
of Colorado Press, Boulder, Colo., 1958), Vol. I. 

1. L. Halpern and B. Laurent, Nuovo Cimento 33, 728 (1964). 

Spin = 2: 

h (k) (2J)~ -fH(k) 
J+2 = € P J+%, 

h~~1 = 2i(2J + 3)!p-tH~~i' 
h(kl = _6€[(2J + 1)(J + 2)J~ -lH(k) 

J 3(2J _ 1) P J+~' 
1 

h(kl = _2i[eJ + 2)(2J + 3)J~ -tH(kI 1 
J-1 (J _ 1) P J-i' 

h(kl = €[2(J + 1)(1 + 2)(2J + 3)]t -iH(k) 3 

J-2 (J _ 1)(2J _ 1) p J-z' 

We note that for solutions regular at the origin one 
replaces the Hankel function by Bessel's function of 
equal degree. 

APPENDIX A: PROPERTIES OF THE 
OPERATORS AND EIGENFUNCTIONS 

In the representation with Sa diagonal, the spin 
matrices have elements 

(Sl)m+l,m = (Sl)m,m+l = U(s - m)(s + m + l)]i, 

(Al) 
(S2)m+l.m = -(S2)m.m+l 

= -tiles - m)(s + m + 1)]i, (A2) 

(S3)m.m = m, (A3) 

where m ranges from -s to s in integral steps and the 
elements not listed are zero. In this representation, 
the matrix C has elements 

Cmn = (i)2mbm.-r<' (A4) 

C is Hermitian and UTlitary, and has the further 
properties 

c*c = CC* = (-lls. 

The eigenfunctions of S2 and Sa are 

(Is, m)}n = 0mn, 

and they have the properties 

Cis, m) = (_i)2m Is, -m), 

Pis, m) = Is, m). 

The spherical harmonics have the properties 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

K ~.rnl = (_1)mlYz._ml' (AlO) 

PYI •lnl = (-1) I y1•rnl • (A11) 

Combining the above properties, one finds for the 
spinor sphel)cal harmonics 

KCo/M = (_I}I+s+M-Jo/-M 
J.t.s J.t ... (AI2) 

(A13) 
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With respect to complex conjugation, the Hankel 
functions have the property 

KH(I.~)( ) _ H(2.1)( ) 
IH P - Ht p. 

APPENDIX B: ON EXISTENCE OF 
PHYSICAL SOLUTIONS 

(A14) 

We give here a brief discussion of the solutions of 
Eq. (31). 

Conditions (23) imply that for a solution of wave 
equation (22) to be physically acceptable, it must 
satisfy the Klein-Gordon equation. Thus, wk..T.M IS 

physically acceptable if it satisfies 

V2 
• E2 • - WE.J.M = WE.J.M· 

Now, making the substitution 

hl.,.(r) == Ci Hl+t(lXp) 
P 

(Bl) 

in Eqs. (38)-(40), one finds that the determinant of 
the unknowns C l is given by 

D (IX) = (_€)k+l J.s. 

x [1 + 1X2 i a: + 1X4 L a:1a:. + ... ], (B2) 
r=1 rl+2:$r2 

where 

k = J + s - IJ - sl, a - i J •• 
r = -aIJ-.I+r-l· 

2s 

N ow it can be shown that the roots of D J .• ( IX) are 
real and that IX = ± 1 i's a root only if J ~ s. Now 
since 

J+s 

w(x) = L hl.,.(r)'frl.8 

satisfies 
1=IJ-sl 

-V2
W = 1X2E2w, 

one sees that physically acceptable radiative solutions 
exist and are given by (B1), only for J ~ s. This is 
the range assumed, therefore, in the paper. 

The equivalence of the Klein-Gordon equation and 
the auxiliary conditions (23) can be seen as follows. 

The most general solution of wave equation (22) is 

1jJ(x, t) = J dP mt.Am(P)Um(P) 

X exp [i(P' x -71EI t) 1 (B3) 

where U m(P) are the orthonormal eigenvectors of the 
helicity operator 1P1-1 S . P. Now the requirement 

[ _V2 + :t22]1jJ(X, t) = 0 

leads to 

Am(P) = 0, -s < m < s 

and so only states of helicity ± 1 contribute in (B3), 
which is precisely what the auxiliary condition (23) 
amounts to, as argued in the paper. 
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On the Width Distribution for a Complex System Whose Hamiltonian 
Contains a Small Interaction That Is Odd under Time-Reversal* 

J. F. McDoNALD 
Department of Mathematics, University of Windsor, Windsor, Ontario, Canada 

(Received 13 August 1968) 

An approximate expression for the width distribution of a complex system with a small odd term is 
given. The expression is compared with available Monte-Carlo calculations and seems to be a good 
approximation for large N (10 ~ N.c:;; 100). 

t. INTRODUCTION 

A question of current interestL2 is whether or not 
the presence of a small time-reversal odd term in the 
Hamiltonian of a complex system, such as a heavy 
nucleus, will manifest itself in various statistical 
properties in an observable manner. It has been shown 
that effects on the nearest-neighbor spacing distribu­
tion are such that their experimental observation 
seems extremely difficult. 1. 2 

There has been little progress made in the analytic 
calculation of the distribution of widths for an odd 
term of arbitrary size,3 although some Monte-Carlo 
calculations have been carried out.! We have obtained 
an explicit expression for a Gaussian ensemble when 
N = 2 (N = dimension of the Hamiltonian submatrix 
with a fixed set of quantum numbers). We were not 
able to carry out an analytical calculation for arbi­
trary N.4 However, from our results for N = 2 and the 
known results for the limiting cases [i.e., the odd term 
is zero (orthogonal ensemble) and the odd term is of 
the same size as the even term (unitary ensemble)] a 
form is conjectured which we believe to be at least a 
good approximation when the odd term is very small 
and N» 1. We have compared this distribution with 
the available Monte-Carlo results and found it to 
approximate them quite well. 

An interesting feature of our distribution is that, in 
the limit as N --+ 00, it approaches one of three limits, 
depending on the ratio of the odd to the even term. 
Only if the ratio goes to zero as liN is the limiting 
distribution different from th'e orthogonal or unitary 
result. 

* Supported in part by an N.R.C. grant. 
1 N. Rosenzweig, J. E. Monahan, and M. L. Mehta, Nucl. Phys. 

A109, 437 (1968). We refer to this paper as RMM. 
2 L. D. Favro and J. F. McDonald, Phys. Rev. Letters 19,1254 

(1967). 
3 M. L. Mehta and N. Rosenzweig [Nucl. Phys. A109, 449 (1968)] 

obtained an analytical expression for the case when the invariant 
term is zero. However, this case is of no physical interest. 

• A major difficulty seems to be a lack of a convenient param­
etrization for the rotation matrix. 

2. THE ENSEMBLE AND DISTRIBUTJON 
UF WIDTHS 

The distribution of matrix elements is chosen to be5 

PN(H, y, 0'.) = 'Y} exp (-0'. Tr H2) exp ( -2Yif/i;) , 
(1) 

where 

and 
Hi; = Ru + iSi;' (3) 

Since the Hamiltonian matrix H is Hermitian, 

(4) 

and 
(5) 

where Rand S are both real matrices. Note that, for 
Y --+ 00, PN becomes the orthogonal distribution and 
for Y --+ 0 it becomes the unitary distribution.6 

If certain assumptions are made, the distribution 
of widths can be shown to be7 

PN(X, y, 0'.) = r~(X - NAi!Au)PN(H, y, oc) dHN, (6) 

where 
x = r/(r), (7) 

r being the width and (r) the average width, 

dHN = II dRi; II dSk1 , (8) 
i>j k>l 

and A is the unitary matrix which diagonalizes H, i.e., 

E = AHAt (9) 

where E is diagonal. It is the distribution PN(X, y, oc) 
which we shall discuss in the remainder of this work. 

• This distribution is the same as that used by RMM (except for a 
trivial scale change) if one takes yloc = (1/£2) - 2. 

6 F. J. Dyson, J. Math. Phys. 3, 140 (1962). 
, See, for example, Ref. 1. 
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TABLE I. The values of A and C for various values of Nand £2. 

~ 
10 20 30 50 100 

B=l B = :. B=t B = 11. B = 3
1
• 

A 0.50465 ± 0.00005 0.50865 ± 0.00005 0.51035 ± 0.00005 0.51515 ± 0.00005 0.52535 ± 0.00005 
0.001 

C 6.7686 ± 0.0003 4.6616 ± 0.0003 4.1833 ± 0.0002 3.3108 ± 0.0002 2.4159 ± 0.0001 

A 0.51015 ± 0.00005 0.51795 ± 0.00005 0.52115 ± 0.00005 0.53045 ± 0.00005 0.54955 ± 0.00005 
0.0025 

C 4.3158 ± 0.0002 3.0002 ± 0.0002 2.7037 ± 0.0001 2.1635 ± 0.0001 1.6143 ± 0.0001 

A 0.51475 ± 0.00005 0.52585 ± 0.00005 0.53025 ± 0.00005 0.54305 ± 0.00005 0.56885 ± 0.00005 
0.004 

C 3.4353 ± 0.0002 2.4076 ± 0.0001 2.1770 ± 0.0001 1.7577 ± 0.0001 1.3348 ± 0.0001 

A 0.51905 ± 0.00005 0.53285 ± 0.00005 0.53835 ± 0.00005 0.55415 ± 0.00005 0.58545 ± 0.00005 
0.0055 

C 2.9481 ± 0.0001 2.0809 ± 0.0001 1.8873 ± 0.0001 1.5357 ± 0.0001 1.1837 ± 0.0001 

A 0.52295 ± 0.00005 0.53935 ± 0.00005 0.54575 ± 0.00005 0.56405 ± 0.00005 0.60015 ± 0.00005 
0.007 

C 2.6283 ± 0.0001 1.8675 ± 0.0001 1.6984 ± 0.0001 1.3915 ± 0.0001 1.0868 ± 0.0001 

A 0.52665 ± 0.00005 0.54535 ± 0.00005 
0.0085 

0.55275 ± 0.00005 0.57345 ± 0.00005 0.61345 ± 0.00005 

C 2.3981 ± 0.0001 1.7144 ± 0.0001 1.5634 ± 0.0001 1.2891 ± 0.0001 1.0187 ± 0.0001 

A 0.53025 ± 0.00005 0.55105 ± 0.00005 
0.01 

0.55925 ± 0.00005 0.58205 ± 0.00005 0.62555 ± 0.00005 

C 2.2225 ± 0.0001 1.5980 ± 0.0001 

3. THE SPECIAL CASE N = 2 

For N = 2, the matrix A can be parametrized with 
the Cayley-Klein parameters. 2 When expressed in 
terms of the Eulerian angles (Goldstein's notationS) 
we have 

All = Ai2 = ei ('P+q,)/2 cos (Oj2) (10) 
and 

1.4607 ± 0.0001 

where 

and 

1.2116 ± 0.0001 

fJ = 2y/rx, 

fh = X(1 - X/2), 

0.9677 ± 0.0001 

(14) 

(15) 

r"/2 
E(m) =Jo (1 - m sin2 O)! dO (16) 

(11) is a complete elliptic integral of the second kind. 9 

It appears that there is an extra parameter here. How­
ever, the matrix elements Hij are found to depend 
only on 0 and '1jJ. 

If the integration variables in (6) are changed from 
the Rij and Sij to the eigenvalues El and E2 , and 0 
and '1jJ one obtains 

P2(X, y, rx) = [rx%(rx + y)!j47T2] 

x L: dElL: dE2(El - E2)2 

X exp [-rx(Ei + E~)] 

x f" dV{" sin 0 dO 

x exp { - 2y[(El - E2)j2f sin2 0 cos2 '1jJ} 

x t5[X - 2 cos2 (0/2)]. (12) 

This expression can be reduced easily to 

P2(X, y, rx) = (1 + fJ)!E[fJfh/(l + fJfh)]/7T(l + fJfh)!, 

(13) 

8 H. Goldstein, Classical Mechanics (Addison-Wesley Pub!. Co., 
Inc., Reading, Mass., 1959), p. 109. 

4. CONJECTURE OF THE WIDTH DISTRI­
BUTION FOR ARBITRARY N 

The limiting cases of PN(X, y, rx) arelO 

r(N/2) (1 - X/N)(N-3)/2 
P.eX 00 rx) = . 

N " r«N - 1)/2) (7TNXi 

e-a:/2 
~--­

N-+oo (27TX)!' 

andll 

PN(X,O,rx)=-- 1-- ~e-x. 
N - 1 ( X)(N-2) 

N N N-+oo 

(17) 

(18) 

Note that in each case the X dependence of PN can be 
obtained from P2 by replacing (1 - X/2) with 
(1 - X/N) and multiplying by (1 - X/N)A(N-2), where 
A = t or 1 for the orthogonal or unitary case, respec­
tively. We propose the same general procedure for the 

• Applied Mathematics Series, No. 55: Handbook of Mathematical 
Functions (National Bureau of Standards, Washington, D.C., 1964), 
p.590. 

10 C. E. Porter and R. G. Thomas, Phys. Rev. 104,483 (1956). 
11 N. UlIah, J. Math. Phys. 4, 1279 (1963). 
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general case. Thus, we surmise that 

PN(X, y, IX) = C{E[P.u/(1 + P.u)]/(1 + P.u)!} 
x (1 - X/N)A(N-2), (19) 

where now 
.u = X(1 - X/N) (20) 

and 
P = By/IX. (21) 

For a given Nand y/IX, there are three parameters 
A, B, and C which must be determined. However, 
there are only two conditions to be imposed on PN . 

These are 

iN XnPN(X, y, IX) dX = 1, n = 0, 1. (22) 

This means that some assumption about the param­
eters must be made. Our procedure will be to 
choose B and use (22) to obtain A and C. 

5. COMPARISON WITH MONTE-CARLO 
CALCULATIONS 

Rosenzweig, Monahan, and Mehta l have calculated 
the relative variance 

R = (X2) - 1, (23) 

for the ensemble given by (1), for N = 10, 20, 30, 
50, and 100, with ° :::;; e2 

:::;; 0.01.5 We found that we 
could choose a value of B for each N such that the 
values of R as calculated from (19) are approximately 
equal to their values for ° :::;; e2 

:::;; 0.01. That is, a B 
depending only on N and not e2• No attempt was made 
to choose a value of B such that our results best 
approximate theirs. Instead, for simplicity, B was 
chosen to be a rational number. The procedure then 
was to calculate A and C from (22) and use the 
results to calculate R.l2 

In Table I, we have given, for the values of B 
chosen, some selected values of A and C. In Fig. 1 we 
have given the results for R corresponding to these 
values of B. It can be seen that our results approximate 
those of RMM to within the error they give for 
N = 10, 20, 30, and 50 and 0:::;; e2 :::;; 0.01. For 
N = 100, they are within the given error for ° :::;; 
e2 :( 0.0085. However, for larger values of e2 our 
approximation is not as good. For example, at 
e2 = 0.01 we disagree by about 3 %. RMM also give 
a histogram for PN with N = 50 and e2 = 0.01. In 
Fig. 2 we have plotted the histogram corresponding to 
our PN for these values. The two histograms appear 
to agree to within about 3 %. 

12 These calculations were carried out on the computer at the 
University of Windsor. 
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E2 

FIG. 1. Plot of the relative variance for N = 10, 20, 30, 50, 100. 

Thus, based on a comparison with the limited 
numerical results available it appears that our distri­
bution is a good approximation to the true distri­
bution for large N and small e2• However, because of 
the apparent discrepancy for N = 100, e2 > 0.0085, 
it is not clear that this approximation will continue 
to be valid for values of N much larger than 100 even 
for small values of e2•l3 That is, it may be that the 
region of validity will decrease in such a way that our 
expression is of little use in obtaining a limiting 
expression when N -+ 00. However, if it should turn 
out that it is valid for very large values of N and small 
but finite values of e2, there are some interesting 
consequences. 

6. THE LIMIT OF OUR DISTRIBUTION AS 
N-+oo 

Note that the values of B chosen above are equal to 
1/0.3N for N = 30, 50, and 100. Thus, it would 
appear that B oc liN for large N. The limit of our 
distribution depends on limN _ oo By/IX. Thus, there 

13 This decrepancy could be removed by allowing B to depend 
on e2 • 
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appear to be three possibilities, namely, 

(1) lim PtAX, y, ex) ---+ e-x (unitary), 
N->oo 

if lim By/ex ---+ 0, 
N->oo 

2.0 

(2) lim PtAX, y, ex) ---+ e-x /2/(27TXY/;; (orthogonal), 
N->oo 

if lim By/ex ---+ 00, 
N->oo 

(3) lim PN(X, y, ex) ---+ Ce-Ax/(1 + TX}/;;, 
N-+oo 

if lim By/ex ---+ T, where T > ° and finite. 
N->oo 

If y/ex is independent of N, the distribution is the 
orthogonal result at 102 = 0 and the unitary result for 
all 10 2 ¥ O. Only if £2 ex l/N is an intermediate 
limiting form obtained. This in effect says that there is 
no such thing as a small but finite noninvariant 
perturbation. 

This last conclusion seems unrealistic from a physi­
cal point of view. The effect may simply be a result of 
the ensemble assumed. That is, perhaps there are too 
many matrix elements Sii which are nonzero simul­
taneously for this ensemble. The same type of thing 
occurs in an ordinary perturbation expansion for the 
eigenvalues and eigenvectors for a fixed Hamiltonian 
if too many matrix elements are nonzero. 

FIG. 2. Plot of histogram for N = 50, E2 = 0.01. 

2.5 3.0 

Thus, it appears that one must do one of four 
things: 

(1) Require that 102 ex 1/ N, 
(2) give up the Gaussian ensemble, 
(3) use a Gaussian ensemble, but somehow restrict 

it so that only a finite number of the Sii can be 
nonzero simultaneously, 

(4) not take the limit as N ---+ 00, but rather give a 
more precise meaning to N. 

The second alternative seems undesirable in view of 
the success of the Gaussian distribution in the limiting 
cases.!4 The third alternative is perhaps a special case 
of the fourth, which has been previously suggested.! 
Also, it seems that the first alternative might just be 
one way of accomplishing the third. 

It should be remembered, of course, that the con­
clusions of this section are based on a hypothesis 
which has not been rigorously proven. That is, we 
have assumed that our expression for PN is meaning­
ful for N ---+ 00. 

14 See, for example, Statistical Theories of Spectra: Fluctuations, 
C. E. Porter, Ed. (Academic Press Inc., New York, 1965). Most of 
the pertinent papers (including Refs. 6, 9, and 10 above) are con­
tained in this collection, as well as an excellent introductory review 
of this subject. See also M. L. Mehta, Random Matrices and the 
Statistical Theory of Energy Levels (Academic Press Inc., New 
York, 1967). 
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Using the Newman-Penrose formalism, the vacuum field equations are solved for Petrov type D. An 
exhaustive set of ten metrics is obtained, including among them a new rotating solution closely related to 
the Ehlers-Kundt "e" metric. They all possess at least two Killing vectors and depend only on a small 
number of arbitrary constants. 

1. INTRODUCTION 

It was once supposed that algebraically special 
fields would playa central role in the search for an 
exact gravitational-wave solution radiating from a 
finite source. Now we know such solutions must 
unfortunately be Petrov type I. Since it seems a large 
step up to the greatest generality of type I gravita­
tional fields, perhaps it is appropriate at this stage to 
return to the algebraically special cases and make sure 
that they are thoroughly understood despite their 
limitations. 

Petro v type D is a particularly interesting class to 
study for several reasons. The Schwarzschild and 
Kerrl metrics are familiar members of this class. 
Besides being free of the line singularities which plague 
most algebraically special metrics,2 these two metrics 
are also stationary in time. Do all type D fields share 
this property? The relation between Petrov type and 
the existence of Killing vectors is not known; but at 
least one can easily prove a weak converse, namely 
that an algebraically special field which is stationary, 
time reversible, and with a finite source can only be 
type D.3 

In this paper we will derive all type D vacuum 
metrics. The line of attack will be the Newman­
Penrose (NP) tetrad formalism4 which has proved its 
usefulness in many related investigations.5 •6 For those 
unfamiliar with the formalism and not wishing to 

• Supported in part by the National Science Foundation [GP-
7976, formerly GP-5391) and the Office of Naval Research fNonr-
220(47»). 

t NSF Predoctoral Fellow. 
+ Present address: University of Texas, Austin, Texas. 
1 R. Kerr, Phys. Rev. Letters 11, 522 (1963). 
2 1. Robinson and A. Trautman, Proc. Roy. Soc. (London) 265, 

463 (1962). 
3 "Stationary and time-reversible" implies that at any point there 

exists an isometry which leaves the point fixed and interchanges the 
light cones. Any isometry must also map the null congruences into 
themselves. Since the expansion of the congruJ;lnces is nonzero for a 
finite source, the "outward" sense on each congruence is uniquely 
specified, and preserved under isometries. Then any double null 
vector and its time-reversed image must be distinct. 

• E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
5 E. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 915 

(1963). 
• E. Newman and L. Tamburino, J. Math. Phys. 3, 902 (1962). 

take the time to learn it, the final metrics are written 
out in full at the end of each section. 

2. NP EQUATIONS 

Let the space be vacuum and type D. Let I", nil, mil, 
mil be a quasi orthonormal tetrad and choose I" and nil 
to lie along the principal null directions. In the 
notation of Ref. 4 this implies "Po = "PI = "Pa = "P4 = 
0. We will refer to "P2 as just "P from now on for 
convenience. The Goldberg-Sachs theorem implies 
K = a = 'JI = A = 0. As usual, we choose coordinates 
such that I" = 15~, making x2 = r an affine parameter 
along I", and we set € = 0. The tetrad components are 

I" = (0, 1,0,0), 

nil = (Xl, U, Xa, X4), 

mil = (~\ w, ~3, ~4). 

(2.1) 

The NP equations under these assumptions are 

DU = (f + 7T)W + (T + i;)iiJ - (y + ;7), 

DXi = (f + 7T)~i + (T + i;)~i, 
Dw = pw + (i; - a. - (3), 

D~i = p~i, 

I5U - /).w = (T - a. - (3)U 

+ (p - y + y)w, 

I5X i - /).~i = (T - a. - (3)Xi 

+ (fl- - Y + y)~i, 
Jw - l5iiJ = (P - fl-) + (p - p)U 

- (p - a)w - (a. - (3)iiJ, 
J~i _ l5~i = (p _ p)Xi _ (p _ rt.)~i 

- (a. - (3)~i, 

Dp = p2, 

D{3 = p{3, 

Drt. = pert. + 7T), 

DT = peT + i;), 
Dy = rt.(T + i;) + (3(f + 7T) + T7T + "P, 

DIl - 157T = PIl + 7T(i; - ii. + (3) + "P, 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

(2.4f) 
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bp = p(ri + {J) + (p - p)T, (2.5a) 

bT = T(T - ri + {J), (2.5b) 

ba - b{J = Pfh + ari + {J{J - 2a{J + (p - p)y - "P, 

(2.5c) 

b1T = -1T(1T + a - (J), 
bfh = -fh(a + (J) - (fh - P)1T, 

(2.5d) 

(2.5e) 

D.p - bT = - PP - T(T + a - (J) + p(y + y) - "P, 

(2.6a) 

D.1T = -fh(T + 1T) - 1T(y - y), (2.6b) 

D.a - by = - pa + y({J - 1') + ya, (2.6c) 

D.{J - by = -fh({J + T) + y(2{J + ri - T) - y{J, 

(2.6d) 

D.fh = - fh(fh + y + y). 

The Bianchi identities are 

D"P = 3p"P, 

D."P = -3fh"P, 

b"P = 3T"P, 

b"P = - 31T"P, 

and the commutation relations are 

D.D - DD. = (y + y)D - (1' + 1T)b 

- (T + iT)b, 

bD - Do = (ri + {J - 1T)D - pb, 

(2.6e) 

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

bD. - D.b = (T - ri - {J)D (2.8) 

+ (fh - y + y)b, 

Jb - bJ = (p - fh)D + (p - p)D. 

- ({J - a)b - (ri - {J)J. 

In addition to the above equations we get three 
more important relations among the tetrad variables 
by applying the commutators to "P: 

(D.D - D!J.)"P = D.(3p"P) - D( -3fh"P) 

= 3'1p(D.p + Dfh) 

= 3'1p[p(y + y) - T(T + 1T) 

+ 1T(T + iT)] 

=? D.p + Dfh = p(y + y) + 1TiT - TT. (2.9) 

Likewise from (bD - Db)"P and (btl - D.b)"P we get 

Jp + D1T = pea + (J), (2.10) 

bfh + D.T = - p(ri + {J) + 'T(y - y). (2.11) 

The other commutators give no new information. 
The integration of the NP equations falls naturally 

into two cases to consider, p ~ 0 and p = o. 

3. SOLUTION FOR p ~ 0 

A. Radial Integration 

The solution to Dp = p2, Eq. (2.4a), is 

p = -(r + i pO)-1, (3.1) 

where pO is real and the superscript indicates it is 
independent of r. The case p = 0, resulting from 
pO -+ 00, will be considered separately later. 

An equation for Jp may be derived from the 
commutator 

(JD - DJ)p = 2pJp - DJp 

= p2(a + (J - 1T) - pJp, 
giving 

DJp - 3pJp = p2(1T - a - (J). (3.2) 

Using Eqs. (2.4a)-(2.4c), the general solution of 
this is found to be 

bp = pea + (J) - 2Top3, (3.3) 

where T° is a "constant" of integration, i.e., inde­
pendent of r. This result is substituted in Eq. (2.10) 
to get 

(3.4) 

which has the solution 

(3.5) 

Equations (2.2), (2.4b)-(2.4e), and (2.7a) now can 
be integrated easily one at a time, each one yielding 
a new integration constant. In this way the radial 
dependence of every tetrad variable except fh is 
determined; the solutions are as follows: 

{J = p{J0, 

a = pao - 1T0 + p2To, 

T = pr/ + PpTO - iTo, 

w = pwo + riO + {J0 - iTo/p, 

~i = p~Oi, 

Xi = X Oi + pp(TO~Oi + TO~Oi) + prl~Oi 
+ pijO~Oi, 

"P = p3"P0, 

Y = yO + p( rlaO - TOiTO) + p( ij0{J0 - T01TO) 

+ p2(t"P0 + T0'f]0) + pp(TOaO + T0{J0) 

(3.6a) 

(3.6b) 

(3.6c) 

(3.6d) 

(3.6e) 

(3.6f) 

(3.6g) 

(3.6h) 

U = UO - r(yO + yO + 'f]01T0 + ijOiTO) + r21TOiTO 

+ p[TO(ri° + {J0) - T°'f]° + 'f]°WO - t"P°] 

+ p[TO(aO + {J0) - TOijO + ijOwO - tViO] 
+ pp(TOWO + 'TOW O - TOTO) - (p/ p)TOiTO 

- (PI p)'T01TO. (3.6i) 
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To get an expression for fl.p and fl we again need to 
use a commutator: 

(b..D - Dfl.)p = 2pfl.p - Dfl.p 

= p2(y + y) _ (T + iT)bp 

- (1' + 7T)Op. 

The last member of this equation can be written out 
in full using Eqs. (2.5a), (3.3), (3.5), and (3.6). The 
result is an equation for fl.p, which can be integrated 
to give 

fl.p = -p2Mo + p2'Yj0(rxO + fJO) 

+ p(yO + yO + 'Yj07T0) + pOijoiTo 

+ pp[ijO(aO + (30) - T07TO + fOiTo - 'Yj0ijO] 

_ p3(t1p0 + f0'Yj0) _ p2p[t?ji0 + f0'!}o 

- TO(rxO + fJO) - fO(aO + (30)] 

(3.7) 

where MO is the constant of integration. Finally we 
substitute this into Eq. (2.9) and perform the radial 
integration for fl, getting 

fl = flo + p(MO - fOiTO) + PT07To 

+ p2(t1p0 + f0'Yj0) + tpp?jio 

+ p2j5Tof o _ r2p7ToiTo. 

B. Transverse Equations 

(3.8) 

In the second stage of the solution we complete the 
elimination of r by substituting these results into the 
remaining equations and equating the coefficients of 
like powers of p. In this manner we obtain differential 
equations involving ~Oi and XOi

, and also some purely 
algebraic constraints between the integration con­
stants. 

To find the derivatives of pO we differentiate Eq. 
(3.1): 

Op = p2(W + iOpO), 

bp = p2(W + ibpO), 

fl.p = p2(U + ifl.pO). 

When these are expanded and compared with Eqs. 
(2.5a), (3.3), and (3.7), we get the following informa­
tion: 

~Oip~i = - pO(aO + (30 - 'Yj0) - iTo + 2i(poliTo, (3.9) 

XOip?i = _ pO(yO + yO + 27T0'!}0 + 2iToijO) 

UO = 'Yj°(rxo + fJO) + ijO(aO + (30) - 'Yj0ijo 

+ ipO( 7T0'Yj0 _ iToijo) - HMo + £10) 
+ T07TO + fOiTo. (3.12) 

The three other Bianchi identities, Eqs. (2.7b)­
(2.7d), provide the derivatives of 1p0: 

~Oi1p~i = -31p°(ao + (30 - 'Yj0 - 2ipoiTo), (3.13) 

~Oi1p~i = -31p°(rxo + fJO), (3.14) 

XOi1p~i = -31p°(yO + yO + flo + 7T0'Yj0 + iToijO). (3.15) 

Substitution in Eqs. (2.5b) and (2.6a) gives the 
transverse derivatives of 7T0, TO, 'Yj0: 

~Oi7T~i = -flO + 7TO(aO - (30), 

~Oi7T~i = 7TO(fJO - rxO), 
, 

~OiT~i = -TO(3aO + (30), 

(3.16) 

(3.17) 

(3.18) 

~OiT?i = -TO(rxO + 3fJo - ijo + 2ip07T0) - 2ipOMo 

_ 2i(pO)37TOiTO + H1p° - ?ji0), (3.19) 

~Oi'Yj~i = -'Yj°(2aO - 'Yj0 - 2ipoiTO) + 2TOiTO, (3.20) 

~Oi,fj?i = -2fJV - MO + £10 + 2foiTo. (3.21) 

Equations (2.4f) and (2.5d) merely confirm these 
results. Equation (2.5c) yields 

~Oirx?i - ~Oi(3?i = 2(3°(fJo - rxO) 

+ 2i pO(yO + flo + rxoiTo + (307T0) 

+ MO + 3(pO)27TOiTO. (3.22) 

Equation (2.5e) yields the derivatives 

~Oifl?i = -l(rxo + fJO) - 2ipopo7T0 + 2ip07TOiTOijo 

+ (MO + MO)7TO + 6(pO)27T07TOiTO, (3.23) 

~oiM~i = -2MO(rxo + fJO) + (1p0 + 2?ji0)7T0+ (pO)2p07TO 

_ 2flofo + 2fo7T0'Yj0 _ 2(pO)27TOiTOijO 

+ 2ipofoiTo7T0 + 4i(lt7T07TOiTO, (3.24) 

and a very important relation 

(3.25) 

When this last constraint is introduced, many of 
the above equations simplify. If we differentiate it and 
compare with Eq. (3.21) we get another condition 

MO - MO = 2ipopo + 4fOiTO - 8(pO)27TOiTo; (3.26) 

and since the real part of the right-hand side must 
vanish, we have also 

+ ti(MO - £10) + i(T07TO - fOiTO), 

WO = -ipO(aO + po - r/) _ 2(pO)2iTO, 

(3.10) 2T07T0 + 2foiTo = 8(p°)27TOiTO + ipO(flO - pO). (3.27) 

(3.11) Continuing in the same manner, Eqs. (2.6) and (2.11) 
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give 

rifl?i = -l(&.o. + po.) + iio.(Mo. + klo.) 
+ 2ipo.iio.fl o. + 10(po.)21To.iio.iio., (3.28) 

riM?i = -2Mo.(~o. + po.) + 3iio.ipo. + 2iliTo.(5Mo. + MO.) 

_ ~(po.)2flo.iio. - 6i po.To.1To.iio. 

(3.29) 

X Oi1T?i = - 1To.(yo. - yo. + 2ipo. 1To.iio.), (3.30) 

Xo.iT?i = -To.(p,o. + yo. + 3yo.) + tiio.( tp _ ipo.) 

- 2iliio.Mo. + 6ilTo. 1To. 1To. - 2i(l)31To. iio. iiO, 

(3.31) 

xOia.0. _ [:OiyO. 
,t ~ ,t 

= _a.0(pO + y0) + po1'0 + ip01T0(2yO + 2flo _ PO) 

+ M01To + 2ipo1T01TOPO _ 4ip01Toii°a.° 

+ f Oiio1TO + 7(l)21T01TOiio, 

Xo.iRO. _ [:OiyO. 
P t , ~ ,t 

= _ PO(flO _ y0 + 2yO) + ~OyO 
_ iliio.(2yo + flO) + MOiio + 4ip01TOiio.Po. 

2 · 0. -0. -0. ° + 3 0. 0. -0 + 3( 0.)2 ° -0. -0. - Ip 1T 1T a. T 1T 1T P 1T 1T 1T , 

Xo.ifl?i = -flO(flo. + y0 + yo. _ 2ip01TOiTO) 

_ 2ip01TOiiOPO, 

(3.32) 

(3.33) 

(3.34) 

XOi M?i = _ 2Mo.(flo. + y0 + yo.) _ 1To. iio.( tpo. _ ipo.) 

+ 4ipo.Mo.1TOiiO + 2flo.fo.iio. + (pO)21To. iTO 

x (flO - pO) + 4ilii01T01TOTO 

- 4ipOiiOii01To.TO - 12i(l)31To.1To.iiOiiO, (3.35) 

and an algebraic constraint 

(3.36) 

It is interesting to note that this constraint is 
implied only by the very last equation, Eq. (2.6e). 
Differentiation of Eq. (3.27) leads to 

! 1TO(tpo. _ ipo.) = -flo.TO + 4(pO)2flOiiO + 2ipoMoiTo. 

+ 2ipoTo1TOiio - 2ipOf o.iT01T0 

_ 6i(po.)31To.iiOiio. 

Finally, the metric equations (2.3) give 

t:.o.iXOi _ Xo.it:.Oi 
~ ,t '!i,t 

(3.37) 

= (flO. + 2yo. - 4iliTo1To.)~o.i + 2il1To.iTo.~o.i 
+ (2ipo.iiO - rio - Po.)XOi, (3.38) 

~Oi~~i _ ~o.i~~i = (_2pO _ 2ipo.1T~~o.i 

+ (2pO - 2ipOiiO)~Oi - 2ilxO i • (3.39) 

The lengthy algebra involved in this section has 
been verified using a FORMAC computer program. 

C. Choice of Tetrad and Coordinates 

So far the tetrad is not completely specified; it has 
the freedom of the two-parameter group of rotations 
which leaves the directions of III and nil fixed: 

III ~ (Ao.)-l/ll, 

nll~Aonll, (3.40) 

mil ~ mil exp (Wo.), 

where AO and (jo. are arbitrary real functions inde­
pendent of r. (If they were allowed to depend on r, 
the condition € = 0 would be violated.) This group 
induces a transformation on all the tetrad variables. 
For instance, 

UO ~ (Ao.)2Uo., 

tpo. ~ (Ao.)3tpo., 

a.u + po ~ [AO(a.u + pO) _ ~O;A?j] exp (Wo.), (3.41) 

1To. ~ 1T~ exp ( _ Wo.), 

TO. ~ (AO)2TO exp (Wo.). 

The fact that some variables transform inhomo­
geneously permits a partial check on the results of 
Sec. 3B, since all the equations obtained there must 
be covariant under the group. It also raises the 
possibility of setting some of the variables to zero. 

We perform a rotation with AO chosen such that 
tpo.ip0 becomes a constant. Then Eqs. (3.13)-(3.15) tell 
us that 

~o. + po. = 2ipOiio., 

y0 + yo. + flO = O. 

(3.42) 

(3.43) 

At this point it is necessary to resolve several cases. 

Case I: 1T0 = TO = O. This is the case already 
treated in Ref. 5 and leads to the three NUT metrics. 

Case II: 1T0 = 0, TO. ;i: O. We select (jo. such that iTO. 
is everywhere real and positive. Equations (3.16), 
(3.31), and (3.43) tell us flo = y0 = O.NowMo = -Uo 

and tp0 == m + it become constants. From a compari­
son of Eqs. (3.18), (3.19), and (3.22) we get 

po. = po., 
2po.UO = -I - 4iPOTo. , 

~o.iP?i = tUO - 2(Po.)2, 
~OiTO = 2Ro.To.. 

" t' 

(3.44) 

Choose coordinates such that Xo.; = Oil' Use 
po. ;i: const to define a coordinate x3 by po. = pU(x3). 

As ~Oi P?i is real, so ~03 must also be real. By co­
ordinate transformations 

Xl ~ Xl + f(x 3
, x'), 

x 3 ~ g(x3
), 

x' ~ x' + h(x3
, x') 

(3.45) 
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make ~3 = -(2)-! and eOl, ~M imaginary. Then, 

tOi~Oj = EOitOj 
~,f c; ~ 1. , 

1:0i'T0. = EOi'To. 
r; it C; ,P 

eOip~i = ~OipOi' 

XOil:Oj = XOi'T0 = XOipo. = ° 
~~f ,I ,I 

show that ~Oi, ,.0, po are functions of only one co­
ordinate, x 3• Integration is straightforward and leads 
to the following metrics: 

Case lI.A: UO < 0. By a further rotation [Eq. 
(3.40)] with AO constant, set UO = -i. The solution 
is Kerr-NUT space7 with a the Kerr parameter and 
Xl = U, X2 = r, X3 = X, X4 = y: 

po = -H2)! cot X, 

'TO = -tia(2)! sin X, 

p = -(r + il - ia cos x)-t, 

III = (0, 1, 0, 0), 
(3.46) 

nil = pp[r2 + [2 + a2
, -t(r2 _ 2mr _12 + a2),0,a], 

mil = -t(2)! p[ia sin x + 2il cot X, 0, 1, i csc xJ. 

The only nonzero components of the metric are 

guu = pp(r2 - 2mr - [2 + a2 cos! X), 

gUT = 1, 
gUll = -2pp/ cos x(r2 - 2mr - 12 + a2) 

+ 2ppa sin2 x(mr + /2), 

grv = -a sin2 X - 21 cos x, 
gxx = _r2 - (1- a cos X)2, 

(3.47) 

g1lu = pp(r2 - 2mr - [2 + a2)[a sin2 X + 21 cos XJ2 
- pp sin2 x(r2 + [2 + a2)2. 

Case lI.B: UO > 0, po < -t(2)!. Now we use the 
rotation to set UO = +! and get 

po = -t(2)! coth x, 

'To = - !ia(2)! sinh x, 

p = -(r - it + ia cosh x)-t, 

III = (0, 1,0,0), 

nil = pp(r2 + [2 + a2
, iCr2 + 2mr - [2 + a2

), 0, aJ, 

mil = -!(2)! p[-ia sinh x + 2ilcothx,0, 1, icschx], 

guu = - pp(r2 + 2mr - 12 + a2 cosh2 X), 

gUT = 1, 

gUY = 2ppl cosh x(r2 + 2mr - /2 + a2
) 

- 2ppa sinh2 x(mr - t"), 
gT1I = a sinh2 x - 21 cosh x, 
g",,,, = _r2 - (-I + a cosh X)2, 

gllll = - pp(r2 + 2mr - [2 + a2)( -a sinh2 x 

(3.48) 

+ 21 cosh X)2 - pp sinh2 xCr2 + [2 + a2)2. 
---

1 M. Demianski and E. Newman, Bull. Acad. Polon. Sci. 14, 653 
(1966). 

Case II.C: UO = +t, po > -t(2)!: 

po = -H2)! tanh x, 

'To = -iia(2)1 cosh x, 

p = -(r - il + ia sinh x)-t, 

III = (0, 1,0,0), 

nil = pji[r2 + 12 - a2
, tcr2 + 2mr - 12 - a2), 0, aJ, 

mil = -t(2)tp( -iacoshx + 2iltanhx,0, 1, isechx), 

guu = - pp(r2 + 2mr - /2 + a2 sinh2 x), 

gllr = 1, 
gUll = 2pjil sinh x(r2 + 2mr - 12 - a2) 

- 2ppa cosh2 x(mr - 12
), 

gT1I = a cosh2 x - 21 sinh x, 
gxx = _r2 - (-1 + a sinh X)2, 

gllll = _pp(r2 + 2mr - /2 - a2
)( -a cosh2 x 

(3.49) 

+ 21 sinh X)2 - pp cosh2 x(r2 + /2 _ a2)2. 

Case lI.D: UO = +1, po = -H2)!: 

po = _ t(2)!, 

'To = -tia(2)lex, 

p = -(r - if + iaexrl, 

III = (0, 1, 0, 0), 

nil = pp[r2 + 12, t(r2 + 2mr - 12),0, aJ, 

mil = - t(2)! p( - iae'" + 2it, 0, 1, ie-X), 

guu = _pp(r2 + 2mr - 12 + a2e2
"'), 

gUT = 1, 

(3.50) 

g"11 = 2ppIeX(r2 + 2mr - 12) - 2ppae2fe(mr - 12
), 

grll = ae2
'" - 21e"', 

g",,,, = _r2 - (-1 + aeX)2, 

g1l1l = - pp(r2 + 2mr - 12)( -ae2'" + 21eX)2 
_ pp(r2 + /2)2e2X, 

Case II.E: UO = 0, I :;6 0. We may use a tetrad 
rotation and a rescaling of coordinates to set I = + 1. 
Then the solution is 

po = -H2)!x-I, 

'To = -!i(2)lx, 

p = -(r + ib + iix2)-t, 
/" = (0, 1,0,0), 

n" = pp(r2 + b2
, mr + b,O, 1), 

m" = -H2)t p( -!ix3 
- ibx, 0, 1, ix-i), 

guu = - pp(2mr + 2b + x2
), 

gut' = 1, 
gU1l = ppx2(r2 - 2mbr - !mrx2 - b2 -lbx2), 

grll = bx2 + lx4
, 

g",,,, = _r2 - (b + tx2)2, 

(3.51) 

gllll = - pp(2mr + 2b)(bx2 + lx4)2 _ ppx2(r2 + b2)2. 
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Case II.F: VQ = 0, / = 0: 

~Q = 0, 

TO. = -ti(2)!, 

p = -(r + iX)-\ 

[Il = (0, 1,0,0), 

nil = pp(r2, mr - t,O, 1), 

mil = -t(2)!p(-ix2, 0,1, i), 

guu = -2ppmr, 

gur = 1, 

gUY = pp(r2 - 2mrx2 + x2), 

gry = x 2
, 

gxx = _r2 - x 2
, 

gyy = _ pp(r4 + 2mx4r _ x 4
). 

(3.52) 

Case III: 7TQ ¥: 0. Now we choose eo. such that 7TQ 
is everywhere real. Equations (3.16), (3.17), (3.30), 
and (3.42) imply that 

/10. = -27TQ(flQ + PQ), 

flO. - po. = 2ipQ7TQ, 

yo. _ yo. = -2ipQ(7TQ)2, 

ocQ = -flO.. 

Likewise, Eqs. (3.26), (3.27), and (3.37) reduce to 

MQ - AlQ = 4ipQ7TQ(flQ + po.) - 27TQ(TQ - f Q), 

TO. + fQ = 4 (pQ)27TQ , 

?po. _ ijJQ = 2ipQ(MQ + AlQ) 

+ 2( TO. - fQ)(flQ + po.) 

- 6i(pQ)3( 7TQ)2. 

It is advantageous to abandon the complex notation 
at this stage and work with real and imaginary parts. 
Let 

flO. = bO + ipQ7TQ, 

TO. = 2(pQ)27TO + i7TQ(Q, 

/10. = -47TQbQ, 

yo. = 27TObQ - ipQ(7TQ)2, (3.53) 

MQ = - VQ + 4(pQ)2(7TQ)2 - 2i(7TQ)2(Q - 4ipQ7TQbQ, 

?po. == rnQ + i/o. 

= mQ + i[-2pQVQ + 4bQ7TQ(Q + 2(pQ)3(7TQ)2]. 

Then the equations to solve are 

cQipO = EQipO = 7TQtQ 
t; ,t '" ,t , 

~it?i = gQit?i = _ 8(pQ)37TQ, 

~Qi7T?i = gQi7T?i = 2bQ7TQ
, 

~Qib?i = gQib?i = tuQ - 2(bQl- t(pQ)\7TQl, 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

tQiuQ. = EQiUO 
t; ,1- ~ ,1-

= -3mQ7TQ - 6pQ( 7TQ)3tQ - 12(pQ)2( 7TQ)2bQ, (3.58) 

(3.59) 

(3.60) 

(3.61) 

Again by Eq. (3.44) we can make ~01, ~Q4 imaginary 
and ~Q3 = d7TQ, where d is a real constant to be chosen 
in a moment. Let x3 = x. Equations (3.54) and (3.55) 
imply 

(3.62) 

The solution is po. = a cn {[2a(2)!/d]x} where cn is 
an elliptic function of modulus k = t(2)! and a is the 
constant of integration. 

Case III.A: a = 0. Here we choose d = + 1. The 
remaining integrations are trivial and lead to the 
following vacuum solution: 

where 

TO. = 0, 

mQ= m, 

[0. = 0, 

7TQ = t(2)t.i(x), 

III = (0, 1,0,0), 

nil = {l, tr2[f(x - IjrW, 0, O}, 

mil = {O, t(2)!rf(x), -i(2)ir-y(x), 

-ti(2)!r-1[f(x)t1 
}, 

guu = -r2[f(x - l/r)]2, 

gur = 1, 

gux = -r2, 

g",,, = -r2[f(x)]-2, 

gY1l = -r2[f(x)]2, 

f(x) = (-2mx3 + ax + b)! 

and m, a, b are constants. 

(3.63) 

(3.64) 

This solution is the static "C" metric discussed by 
Ehlers and Kundt.8 

Case III.B: a ¥: 0. Choose d = - 2a(2)!. Then 

po. = a cn x, 

to. = 2a2(2)! sn x dn x. (3.65) 

Equation (3.59) is next integrated to yield 

?po. = (m + il)(dn x - ti(2)! sn X)3, (3.66) 

8 J. Ehlers and W. Kundt in Gravitation: An Introduction to 
Current Research, L. Witten, Ed. (John Wiley & Sons, Inc., New 
York, 1962). 
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where m and I are constants. Equation (3.58) can be 
rewritten as 

;Oi[UO + 3(l7TO)2L = -3mo7T0, 

and integrated to yield 

uo + 3 (p07TO)2 

= b + !(2)ia- 1 en x(m sn x - 1(2)! dn x), (3.67) 

introducing a constant h. When Eqs. (3.56), (3.57), 
and (3.67) are combined, they give the following 
equation for (7TO)2: 

(7T0)7., sn x dn x - (7T0)2 cn3 x = -iba-2 en x 

+ tla-3 dna x + -ts(2)!ma-3 sna x, (3.68) 

which has the solution 

(7T0)2 = C sn x dn x + iba-2 cn2 x 

- i(2)ia- a en x(m sn x + /(2)! dn x). (3.69) 

Finally, the solution of Eqs. (3.60), (3.61), for 
j = 1,4, is 

Xo; = Di sn x + Ei dn x, (3.70) 

;0; = ti(2)!(7T0)-I( _Di dn x + tEi sn x). (3.71) 

We choose Di = 014 and Ei = 0;1' and the resulting 
vacuum solution is 

p = -(r + ia en x)-l, 

III = (0, 1,0, 0), 

nil = (xl, U, 0, X 4
), 

mil = -i(2}~,o[ -ii(7TO)-1 sn x, (2)!7T0 

X (r2 + 3a2 cn2 x), 4a7T0, i( 7T0)-1 dn x], 

where 

Xl = dn x + (2)!app(r en x + a(2)! sn x dn x) sn x, 

X4 = sn x - 2(2)!app(r cn x + a(2)! sn x dn x)dn x, 

U = b + i(2)!a-1 en x(m sn x - 1(2)! dn x) 

+ 2(2)!acr enS x - a-1br(2)! sn x cn x dn x 

- ia-2mr(dn3 x - t snll x dn x) 

+ la-2Ir(! dn2 x sn x - isn3 x) 

+ (7T0)2(r2 - 3a2 cn2 x) 

+ pp(rmO + alOcnx) (3.72) 

- 4p,oa2(7T0)2(r en x - a(2)! sn x dn X)2, 

mO = m(dn3 x - !dn x sn2 x) 

+ /(2)!CJdn2 x sn x - isnSx), 

1° = -m(2)!(tdn2 x sn x - 1sn3 x) 

+ l(dn3 x - !dn x sn2 x), 

(7T0)2 = C sn x dn x + la-2b cn2 x 

- t(2)ta-3 en x(m sn x + l(2)~ dn x), 

and a, b, c, /, m are all arbitrary constants. 

The nonzero metric components in these terms are 

guu = -2U dn2 x - (X47T°)2(r2 + a2 cn2 x) 

gUT = dn x 

gu., = -t(2)!a-1 dn x(r2 + 3a2 cn2 x) 

gUY = - U sn x dn x + XlX4(7TO)2(r2 + a2 cn2 x) 

gTY = t sn x (3.73) 

g.,., = -11s(a7T0)-2(r2 + a2 cn2 x) 

g.,y = -1(2)ta-1 sn x(r2 + 3a2 cn2 x) 

guu = -tU sn2 x - (Xl7T0)2(r2 + a2 cn2 x). 

4. SOLUTION FOR p = 0 

In what follows we can assume fl = ° as well, 
because otherwise after interchange of III and nil the 
previous derivation would apply. Since III is now 
proportional to a gradient, we can follo\Y Newman 
and Penrose4 and set 7 = ii + f3, Xl = 1, ~l = 0. 
Furthermore, Eqs. (2.4d), (2.9), (2.l0) imply D7 = 0, 
D7T = 0, and 7T7T = 7T, so we may use the tetrad 
rotation Eq. (3.38) to set 7 = -7T. The NP equations 
(2.4f) , (2.5b), (2.5d), (2.6a) now yield an expression 
for 1p, namely, 

(4.1) 

We must insist on 1p =;6 0 and hence 7 =;6 0. Some of 
the other immediate consequences of the equations 
are 

D1p = tl1p = 0, (4.2) 

D7 = tl7 = 0, (4.3) 

b1p = J1p = 371p, (4.4) 

07 = J7 = 2f37, (4.5) 

~ + f3 = ii + p, (4.6) 

y = ji, (4.7) 

oy = 0. (4.8) 

The radial integration is easily performed. All the 
variables are independent of r except 

y = yO + r[(7 + T)(f3 - ~) - 7 2], (4.9) 

Xi = XOi - (r - f)(;i - li), (4.10) 

w = WO - r(-T + f), (4.l1) 

U = Uo - r[2yO + (7 - T)WO] 

- r2[(7 + f)(f3 - ex) - 7 2]. (4.12) 

When these are substituted in the remaining NP 
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equations we get the following: 

byo = -WO[(T + f)(~ - ex) - 1'2], (4.13) 

bUo - XOiw~; 

=wO[2yO+(T-f)(WO-Wo)]- UO(T + f), (4.14) 

bwo - bwo = -Cwo - WO)(ex + 2(3 + p), (4.15) 

8~i - b~i = (~i - h(el - h (4.16) 

bXOi - XOie: i = WO(T - f)(~i - ~i). (4.17) 

First we will show how WO may be eliminated. The 
coordinate transformation r -+ r + f(x l , x3 , x4) leaves 
previous conditions unchanged. Under this trans­
formation 

yO -+ yO _ freT + f)«(3 - ex) - 1'2], (4.18) 

WO -+ WO + bf + f(T + f). (4.19) 

The quantity in brackets is Dy. If Dy is nonzero, 
f = yO/Dy will make yO -+ ° and Eq. (4.13) will then 
imply WO -+ 0. If Dy = 0 we have byo = 0. Then Eq. 
(4.19) may be used to make WO -+ 0, provided the 
integrability conditions are satisfied. In other words 
we must specify Df, !1f such that all the commutators 
applied to f are given correctly. Choose Df = 0, 
X°1.. = UO - 2yOf. The only nontrivial commutators 

,j --

are (!1b - b!1)f and (bb - bb)f; and these are auto-
matically satisfied by virtue of Eqs. (4.14)-(4.17). 

Next we show how to eliminate UO, yO by means of a 
combined coordinate transformation and tetrad 
rotation. The rotation is 

(I'Y" = A-l(xl)ll', 

(n')1' = A(xl)nl', 

and the change of coordinates is 
1 

Xl' = f' A-\u) du, 

r' = rA(xl) + UOR(Xl), 

which together preserve all previous conditions but 
send U = UO - 2ryO(Xl) - r2Dy into something new. 
We want to pick A, R such that the new UO, yO are 
zero. The observation that b(UODy) = 0 is sufficient 
to reduce the problem to the solution of two total 
differential equations for A (Xl) , R(xl), given yO and 
UODy as arbitrary functions of Xl. Under sufficient 
assumptions of continuity, such equations always 
have solutions, which is all we need to know. 

Finally, from b1p = J1p ~ 0 we can choose a 
coordinate x3 = x such that ~3 is real, and then the 

From Eqs. (4.5) and (4.6), we find 

T-f=cx-~+(3+p 

= 2«(3 - p) 
= 1'-1 bT - f-lbT. (4.20) 

Solve Eq. (4.4) for l' and substitute in this expression. 
The result may be written as 

0= b(1ptbifJ) (4.21) 
ipt b1p 

and integrated twice to give 

(4.22) 

The coordinate freedom x' = f(x) would let us set 
Re (1p) equal to any specified function of x, but thanks 
to Eq. (4.22) we can choose x such that 

1p = (m + il)(x + ia)-3, (4.23) 

where m, I, a are again real constants. Next, 1', ex, and 
(3 are all expressed in terms of ~3 and substituted into 
Eq. (4.1) which becomes 

[(~3)2] + 2ia(e)2 = _ m + il. (4.24) 
,x x2 + a2 (x + ia)2 

If a =;I: 0, this has the real solution 

(
t 3)2 __ 2amx + l(aZ 

- XZ) , 
S" (4.25) 

2a(x2 + a2
) 

while if a = 0 the solution is 

(4.26) 

where C is an arbitrary constant, and necessarily 
1 = O. Then by a coordinate transformation we can 
set C = ±t, O. The resulting metrics are 

Case IV.A: 

11' = (0, 1,0,0), 

I' = (1 _r2[ 0 ~) 
n , 2a(x2 + aZ)' 'xz + a2 ' 

ml'= (O'):~a2,e'1)' 
guu = r2/a-l (xZ + a2)-1, 

gur = 1, 
gux = -2rx{x2 + a2)-1, 

gxx = -t~-Z, 
gil" = -2~z, 

(4.27) 

(4.28) 

usual transformation X4 -+ X4 + f(x3 , x4) makes ~4 where 
imaginary. Equations (4.2) and (4.3) show that the 
remaining variables depend only on x. (4.29) 
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Case lV.B: 

where 

III = (0, 1,0, 0), 

nil = (1, Cr2Jx2
, 0, 0), 

mil = (0, 2r~jx, ~, ig), 

g = _2Cr2jx2 .,,' , 
gur = 1, 

g"," = -2r/x, 

g",,,, = -H-2
, 

gj/j/ = _2~2, 

C = ±t,o, 
~ = (C + mJx)t. 

S. DISCUSSION 

(4.30) 

(4.31) 

The solutions of Case II, Eqs. (3.46)-(3.53), are 
the easiest ones to try to interpret physically. If we 
examine the two-dimensional positive-definite metric 
of the wavefronts or equipotentials u = const, r = 
const, we see that asymptotically as r -+ 00 they 
become spheres in Case II.A, pseudo spheres in 
Cases n.B-n.D, and planes in Cases II.E, II.F. 
Case ILA is Kerr-NUT space, which Demianski and 
Newman7 maintain is the field of a particle possessing 
mass, angular momentum, and a "magnetic monopole 
of mass." We propose that all the metrics of Case II 
represent spinning particles and correspond to the 
six different ways we can pick a velocity four-vector 
and an angular-momentum vector orthogonal to it. 
We attribute Cases n.B, ILD to a particle with 
spacelike velocity and Cases II.E, II.F to one with 

lightlike velocity. The angular-momentum vector is 
supposed to be spacelike for Cases ILA, II.C, II.F null 
for Cases II.D. II.E, and timelike for Case n.B. These 
assertions are reinforced by an examination of the 
geometry of the principal congruences in the flat-space 
limit m = 1 = 0, and also from the fact that the 
metrics may be obtained from one another by infinite 
Lorentz transformations. Particles with the above 
properties have been discussed in the framework of 
quantum mechanics by Wigner. 9 

Case ILA, Eqs. (3.63) and (3.64), is the static 
degenerate "C" metric listed by Ehlers and Kundt. 8 

No suitable interpretation is known. Case II.B seems 
to be closely related, but with rotation added. Both 
are asymptotically flat at r -+ 00. Case n.B is believed 
to be new. 

Case IV.B, Eqs. (4.29) and (4.30), also appears in 
Ehlers and Kundt,8 referred to there as the "B" 
metrics. Case IV.A is a rotating generalization which 
tends smoothly to IV.B in the limit 1-+ 0, a -': 0, 
I/a -+ C. 

In a search for a subclass of metrics with two 
Killing vectors, CarterlO has found type D metrics 
equivalent to II and IV although he did not attempt 
to delineate the many cases. 
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A .method is. presente~ whi~h makes explicit use of Young diagrams to calculate SU(3) @ SU(2) 
multIplet-couplIng coefficIents In SU(6). The multiplet-coupling coefficients for 35 @ 70 are given. 

INTRODUCTION 

In this paper we present the method used previously 
to calculate the SU(6) multiplet-coupling coefficients 
for the product 35 @ 56.1 As an example of the use of 
the method, we give here the previously unpublished 
coefficients for 35 ® 70. These coefficients have been 
used to calculate decay widths2 and to construct the 
irreducible mass tensors of the 20 representation in 
bootstrap calculations.3 They can be used to calculate 
scattering amplitudes for such processes as a meson + 
baryon ---+ meson + baryon resonance, where the 
baryon resonance is accommodated in the 70 repre­
sentation of SU(6). 

The group SU(6), which is used to classify the 
elementary particles, contains SU(3), whose states 
give the isotopic spin and hypercharge quantum 
numbers of the particles, and SU(2), whose states give 
the intrinsic spin. Multiplet-coupling coefficients have 
been published for the SU(3) products 8 ® 8 and 
8 ® 10, which are the SU(3) multiplets in which the 
most interesting particles and resonances have been 
accommodated.4 Our procedure makes use of these 
existing tables, the Condon-Shortley tables for SU(2), 
and the permutation symmetries of states in SU(6) to 
compute the multiplet-coupling coefficients for the 
35 ® 70 of SU(6). We have used the tables for SU(3) 
and SU(2) to write out highest-weight SU(3) ® SU(2) 
states of SU(6). These states do not, in general, belong 
to irreducible representations of SU(6). We have then 
derived information about the permutation symmetry 
of the irreducible representations of SU(6) from their 
Young tableaux. [It is well known that operators of 
the permutation groups commute with operators of 
the unitary groups, so that the states of SU(6) can be 

: Supported in part by the National Science Foundation. 
J. C. Carter, J. J. Coyne, and S. Meshkov, Phys. Rev. Letters 

14,523 (1965); G. E. Baird and L. C. Biedenharn, J. Math. Phys. 5, 
1730 (1964); c. L. Cook and G. Murtaza, Nuovo Cimento 39, 531 
(1965); L. Schulke, Z. Phyzik 183, 424 (1965). 

2 J. C. Carter and M. E. M. Head, Phys. Rev. 176, 1808 (1968). 
3 J. G. Koerner, Phys. Rev. 152, 1389 (1966). 
4 P. McNamee and F. Chilton, Rev. Mod. Phys. 36, 1005 (1964). 

classified according to their mixed symmetries under 
quark intercharge. The mixed symmetries are charac­
terized by the use of Young tableaux.] This procedure 
has yielded the equations necessary to calculate the 
multiplet-coupling coefficients (or generalized Clebsch­
Gordan coefficients) for the irreducible representa­
tions of 35 ® 56 and 35 ® 70. 

THE FORMATION OF PRODUCT STATES 
IN QUARK FORM 

To calculate the coefficients it is necessary to know 
what irreducible representations occur in the SU(6) 
product space. Here 35 ® 70 = 20 EB 56 EB 70 EB 540 EB 
560 EB 1134.5 One next determines the SU(3) ® SU(2) 
composition of the product representations. An 
SU(3) ® SU(2) representation is specified by the 
notation Nm = {SU(3)SU(2)}. The representations 
whose direct product is being taken will hereinafter be 
referred to as parent representations. The SU(6) 35 
contains the Nm multiplets 83 , 8\ and P. The 70 
contains 84, 102

, 82 , and P. The SU(3) ® SU(2) 
representations [unreduced in SU(6)] which occur in 
the product are formed by taking all possible products 
of the parents. Thus, for 35 ® 70 we form all product 
spaces [reduced in SU(3) and SU(2)] allowed by the 
following scheme: 

35 @70 ~ {;:} @ PJ (1) 

For example, 

(83 ® 102) = 82.4 EB 102.4 EB 272•4 EB 352•4• 

In general, an SU(3) @ SU(2) representation which is 
also reduced in SU(6) contains a mixture of products 
coming from (1). For example, the Nffl state 352 is 
given by 

352 = (83 ® 102) EB (81 ® 102). (2) 

• C. R. Hagen and A. T. MacFarlane J. Math. Phys 6 1355 
(1965). ,. , 

1204 
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The quantum numbers which classify states in 
SU(6) ;:, SU(3) ® SU(2) are S (ordinary spin), S., 
I (I-spin), I z , and Y,(hypercharge). A highest-weight 
state is here taken to be the state of a representation 
which has highest Sz, then Iz , then Y. We can form 
the state of highest weight in the SU(3)8U(2) 352 = 
(83 ® 102) by using the SU(3) coupling coefficients of 
Chilton-McNamee ,5 and the SU(2) coefficients of 
Condon-Shortley. Thus, the highest-weight state in 
8 ® 10 of multiplicity N in SU(3) is 

<P3s(1 !;!) = <Ps(O 1; 1)<p10(1 t; t), (3) 

where <PN( Y, I; Iz) is a state belonging to the N­
dimensional representation of SU(3). For 3 ® 2. in 
SU(2), 

'l"2(t; !) = (i)t[(2)t'l"3(l; 1)'l"2{i-; -t) 

- 'l"3(1; 0)'l"2(t; t)], (4) 

where 'l" m(S; Sz) is a state of the m dimensional 
representation of SU(2). Hence, in SU(6) for 
83 ® 82 = 352 , the highest-weight state is 

<1>(1 t t; ! l) = (t)![(2)!<I>(0 1 1; 1 1)<1>(1 t !; t -t) 
- <1>(0 1 1; 1 0)<1>(1 t t; t t), (5) 

where 

<I>(Y, I, S; I., Sz) = <p(Y, I, Iz)'Y(S, Sz)' 

The 352 which arises from (81 ® 102) can be formed in 
a similar fashion. The most general form of the state of 
highest weight of the 352 in 35 ® 70 is, therefore, 

<1>(1 ! t; t !) 
= ex<l>l(1 t t; t t) + /1<1>2(1 ! t; t t), (6) 

where <1>1 comes from (83 ® 102) and <1>2 from 
(81 ® 102). Since the 352 contains a mixture of the 560 
and 1134 representations of SU(6), a proper choice of 
the multiplet-coupling factors ex and f3 will serve to 
reduce the 352 into one or the other SU(6) representa­
tion. ex and /1, when thus determined, are the 
generalized Clebsch-Gordan coefficients (or multiplet­
coupling factors) for reducing 352 into the SU(6) 
representations 560 and 1134. The values of ex and f3 
which reduce 352 will be calculated in this paper as an 
example of the method herein presented. The proper 
choice of coefficients was made by writing the state of 
highest weight in explicit quark form and imposing the 
permutation symmetry of the SU(6) product repre­
sentation on the quarks. 

For this it is necessary to have the parent repre­
sentations in quark form. The fundamental 6-dimen­
sional (quark) representation of SU(6) will be written 
in the form (p+, n+, A+, p_ , n_, A_). The conjugate 
representation is chosen to be CP-, -iL, -L, -p+, 

fi+, X+). (Note that 1'+ is an antiproton with spin up.) 
The Young diagram of the 35 is 

J 

and of the 70 is 

In tensor notation, the 35 is thus the traceless tensor 
Tp - tT~ and the 70 is 

T[aP1Y + T[YPltt' 

The state of highest weight of the 35 is therefore 
p+fi+, which belongs to 83

• The state of highest weight 
of the 70 is m! [P+A+Jp+, which belongs to 84, where 
we use the standard tableaux 

Hr 
and the definition of a Young operator given in 
Hamermesh,6 Y = QP = Zap (-l)qqp. All the states 
of a given SU(3) ® SU(2) representation can be 
generated from the state of highest weight by making 
use of the generators7 

I± = Z I; + Z I~, V± = :2 Vq± + :2 Vr, 
q ii <1 ii 

S± = Z S; + Z S~, (7) 
q Q 

where q designates quarks and ij designates antiquarks. 
T;(I:a) converts proton (antineutron) quarks into 
neutron (antiproton) quarks. For example, I~(fi+) = 
-1'+. V;(V:a) converts proton (antilambda) quarks 
into lambda (antiproton) quarks. S;(S:a) lowers the z 
component of ordinary spin. The singlet (mass split­
ting) term in the SU(3) octet is - (t)!(p1' + nii + AX).s 
With these conventions the singlet state which is 
formed by contraction on 6 X 6 is -(t)!(p+p- + 
n+fL + A+L + p_p+ + nJI+ + A_X+). The highest­
weight states of other SU(3) ® SU(2) representations 
in a given SU(6) representation are formed by orthog­
ona1izing. The highest-weight state in each Nm 

6 J. Hamermesh, Group Theory (Addison-Wesley Pub!. Co., 
Reading, Mass., 1962). 

, B. Sakita "Argonne National Laboratory Lecture Notes," 1966; 
R. Delbourgo, M. A. Rashid, A. Salam, and J. Strathdee in High 
Energy Physics and Elementary Particles (International Atomic 
Energy Agency, Vienna, 1965); S. Pakvasa and S. P. Rosen, Phys. 
Rev. 147,1166 (1966). 

8 D. Horn, Nuovo Cimento 33, 64 (1964). 
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TABLE I. The highest-weight SU(3) ® SU(2) states of the SU(6) 
35 and 70 in quark form. The fuIl 35 and 70 can be generated 

from these states. [ABl = AB - BA. 

35 S8 p+n+ 
S1 -(i)l(P+,L + pJz+) 

is -(l)l(P+p+ + n+ii+ + A+X+) 

70 8' -(i)l[p+A+lp+ 
102 (i)t[p+p_lp+ 

82 -Ct)f{[p+AJp+ + [p_p+lA+ + [A+p+lp_} 

12 -t{[A+nJp+ + [p_A+ln+ + [A_n+lp+ 

+ [n+p_1A+ + [p+A_ln+ + [n-p+1A+ 

- 2[n+p+lA_ - 2[p+A+ln_ - 2[A+n+lp_} 

representation of the 35 and the 70 is presented in 
Table I to make our phase conventions clear. 

With 35 and 70 in quark notation, it is possible to 
write any SU(3) ® SU(2) product state in quark form, 
leaving only the multiplet-coupling factors undeter­
mined. Substituting the quark states into Eq. (6): 

<1>(1 t t; t t) = [(l)!oc]p+ii+[p+p_]p_ 

+ [i,8 - tmioc]p_ii+(p+p_]p+ 

+ [t,8 - Hl)!oc]p+ii_(p+p_]p+. (8) 

Individual terms in the sum on the right will be 
referred to as multi quark terms. The convention used 
here, which is modeled on the convention of Sawada 
and Y onezawa, is that position in a multiquark term 
indicates particle number. 9 Thus, in p+X+[p+p_]p_, 
particle 1 is in state p+, particle 2 in X+, etc. Detailed 
inspection of the standard tableaux for the various 
SU(6) product representations yields conditions on 
oc and ,8 which will produce the required symmetry 
of the irreducible SU(6) representations. 

THE USE OF YOUNG DIAGRAMS 

To see how this can be done, it is necessary to dis­
cuss the standard tableaux of the product states in 
some detail. For the 70, we use 

rrr 
For the 35, 

4 

• S. Sawada and M. Yonezawa, Progr. Theoret. Phys. (Kyoto) 
23, 662 (1960). 

Recall that 

35 ® 70 = 20 EB 56 EB 70 EB 70 EB 540 EB 560 EB 1134. 

It is convenient to consider 35 ® 70 as coming from 
6 ® 70 ® 6, since the only term in 6 ® 70 ® 6 which 
does not belong to 35 ® 70 is I ® 70, and that is 
easily recognized. Now 

70 ® 6 = 210 EB 105A EB 105B • 

rn~ 141 ffiilll ~ rn rn}] (9) 

We now multiply all representations on the right side 
of (9) by 6 to get 

6 ® 210 = 1134 

70 

4 

6 ® 105A = 560 

~I~ 
1 

1-
2 

l-

I-

'-

6 ® 105B = 20 + 

3 4 

56 

2 

70 

3 

4 

A 

70 EB 540 

]~ 
2 

4 

3 

(10) 
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We will call SU(3) ® SU(2) representations in the 
product space, which have a higher multiplicity in 
either SU(3) or SU(2) than either SU(6) parent, the 
large representations. All other product representa­
tions will be called small. For example, 352 is a large 
representation because there is no SU(3) 35 contained 
in either the 35 or the 70 of the SU(6). It is clear that, 
for the large representations which can fall only in the 
540, the 560, or the 1134, the 4-quark permutation 
symmetry is unique in every case. For example, in 
352 , the 1134 must have the 4-quark symmetry of the 
210. This immediately makes it possible to reduce 
Eq. (8). Particles 1 and 4 are symmetrically coupled in 
the 1134 and anti symmetrically coupled in the 560. 
Therefore, 

mta = tf3 - tmta, for the 1134, 

and (11 ) 

-(l)!a = tf3 - Hl)ia , for the 560. 

The addition of the normalization condition deter­
mines a and f3 for both representations. Similar argu­
ments can be used to form all highest-weight states 
of the large representations. Once the multiplet­
coupling coefficients are known, all states of the large 
representations can be formed. Thus, the state of 
highest weight in the SU(3) ® SU(2) 352 of the SU(6) 
1134 is 

$1134(1 t t; t t) = -t$SI(O 1 0; 10)$102(1 t t; t t) 

+ (£)![(i)!$ss(O 11; 11)<1>102(1 t t; t -t) 

- (l)!<I>S3(0 1 1; 1 0)<1>102(1 t t; t t)J. 

The small Nm representations are formed by con­
tracting the direct product of the parents. The 35 ® 70 
contains only one antiquark. In a contracted repre­
sentation of a ijqqqq state, the antiquark must be 
accompanied by its corresponding quark in each 
multi quark term. A term, therefore, which contains 
X+ must also contain A_. This imposes, in general, a 
number of independent conditions on the multiplet­
coupling coefficients. For example, the highest-weight 
state in the 12 , when written in the general form of 
Eq. (8), contains the multi quark term p_X+[A+n_JA+. 
The coefficient of this term in both 70's must be zero, 
since there is no A_ to go with ~+. Such considerations 
yield two independent conditions on the multiplet­
coupling coefficients, enough to eliminate both large 
representations. 

There are cases in which more than one dimension­
ality results from contracting a product. For example, 
contracting 6 ® 210 gives a 70 and a 56. The standard 

tableaux shows that particles 1, 2, and 4 are sym­
metrically coupled in the S6. This, in addition to the 
conditions mentioned earlier, imposes a sufficient 
number of conditions on the multiplet-coupling 
coefficients to give a 56. The orthogonality of the 70 
to the 56 can be used to determine the coefficients for 
the 70. 

THE CLASSIFICATION OF THE TWO 70's 

The product 35 ® 70 is not simply reducible. The 
70 representation appears twice. In the product 
n ® m, the permutation symmetry of the parents can 
be used to classify the products ifn = m. For example, 
35 ® 35 = 35F EB 35D EB .. '. If n =F m, the case is 
not so simple. It is, however, possible to make use of 
the permutation symmetry under quark interchange 
to classify the products. 

One can construct the two 70's so that the 4-quark 
part of one of them contains no 210 symmetry. Since 
the 1134 comes only from 6 ® 210 [cf. Eqs. (10)], this 
70 (which we call 70n ) cannot be produced by any 
operation on the ijqqqq in 1134 states which merely 
recouples the ijto theqqqq. The W-spin lowering oper­
ation is such an operation.10 We have used this 
classification (the absence of 210 in 70n ) in order to 
facilitate calculations in which 35 ® 56 --+ 35 ® 70, 
since the 4-quark permutation symmetry of the 70 in 
35 ® 56 must be that of the 210: 

56 ® 6 = 126 EB 210 

I I u I I 

and 

6 ® 126 = 56 EB 700, 

6 ® 210 = 56 EB 70 EB 1134. 

Where a given SU(3)8U(2) representation occurs more 
than once in an SU(6) representation (e.g., the 84 of 
1134), we have chosen our notation to agree with that 
of Ref. 1. For example, in the 274 of 1134, two 
orthogonal 274's were found using the techniques 
described above. Then, the coefficient of the multi­
quark term involving X+ was found by projection. 
The term of highest Sz, Y, Iz in 274 contains 
X+r/>({ 1 t; 1 t), where r/> comes from the 15~ of 
210. The scalar product of this term and the highest­
weight term of the 274 was calculated, and the linear 
combinations of the 274's from 35 ® 70 were adjusted 
to give the same coefficients of X+r/>(t 1 t; 1 t) as were 

10 H. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670 (1965); 
H. Harari et al., Phys. Rev. 146, 1052 (1966). 
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used in 35 ® 56. The 27~ and 27~ are thus, in effect, 
differentiated by their 6 ® 210 parentage. 

The phases within the product 70's have been 
chosen to agree with those of the parent 70. The 
phases within the 56 and the 1134 have been chosen 
to agree with those previously published for 35 ® 56.1 
[It is to be noted, however, that the conventions used 
here to generate an SU(6) 35 are different from those 
of Carter et aU This requires that all columns in the 
tables of Carter, Coyne, and Meshkov1 which contain 
an 81 or a 13 must reverse sign.] This has been checked 
by use of the SU(6) generator N_, which lowers the 
spin of neutron quarks and antiquarks without affect­
ing the other quarks. 

The multiplet-coupling coefficients for 35 ® 70 are 
given in Table II. 
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APPENDIX: PHASES 

The phases we have used within the 56 and the 70 
have been chosen on the basis of parentage. In SU(6), 
the 56 comes from 6 ® 6 ® 6 = 21 ® 6. In SU(3) ® 
SU(2), the 56 comes from 32 ® 32 ® 32 = f63 $ 31J ® 
32• The 70 we have used comes in SU(6) from 
6 ® 6 ® 6 = 15 ® 6. In SU(3) @ SU(2), the 70 comes 
from 32 ® 32 ® 32 = [61 $ 33] ® 32• To select the over­
all phase of an SU(3) ® SU(2) multiplet within the 56 
or the 70, we have first written out the highest weight 
state in each multiplet. A plus sign is then given to 
that term which contains the highest-weight contri­
bution from the SU(6) 21 or 15. The highest-weight 
state in 63 is p+p+; in 31

, 

-Hp+,L - p_A+ + A_p+ - A+P_]; 

in 6\ mirp~p_]; in 33, mt[p+A+]. In the 56, the 
SU(3) ® SU(2) parents are 1()4 = (63 ® 32) and 
82 = (63 ® 32). In the 70, they are 84 = (33 ® 32); 

102 = (61 ® 32); 82 = [(t)t(61 ® 32) + (t)t(33 ® 32)]; 

and 12 = (33 ® 32). 

TABLE II. SU(6) Clebsch-Gordan coefficients for the product 35 C2! ~O. The columns ar~ th~ representations of S.U(6) and the 
rows are their SU(3) ® SU(2) components. Each number is to be dIvIded by the normalIzatIOn at the bottom of Its column. 
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540.,t 540
B
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--
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Th R s F model is formulated on a triangular lattice and solved for certain v~lues of the verte~ co~­
figur:tio~ probabilities (including those corresponding to .the ."ice !ll0d~I"). As with the square lattice, It 
is found that the system undergoes a phase transition which IS of mfimte order. 

1. INTRODUCTION 

Liebl has recently solved the ice model, the F model 
of Rys,2 and the Slater KDP model for a plane square 
lattice. These models reduce to counting the number 
of ways of placing arrows on the bonds of the lattice 
such that there are as many arrows pointing in to 
each vertex as there are pointing out, and such that 
there are given numbers of the various allowed types 
of vertices. 

Clearly such models can be formulated on any 
lattice with an even number of neighbors per site 
and, in particular, one might be tempted to think .that 
for a triangular lattice the solutions could be obtamed 
by a straightforward extension of Lieb's work. It 
turns out, however, that there are difficulties. 

In this paper we formulate the F model on a plane 
triangular lattice and find that the most o~vi~us 
ansatz for the solution works only when a restnctlOn 
is imposed on the probabilities of the various types 
of vertices. Nevertheless, this case is still of some 
interest, since it includes the triangular "ice model" 
and predicts an infinite-orller phase transition similar 
to that found for the square lattice. 

2. PARTITION FUNCTION AND TRANSFER 
MATRIX 

Suppose that arrows are placed on the bonds of a 
triangular lattice so that there are three entering and 
leaving each site or vertex. There are then 20 possible 
configurations of arrows at each vertex, and if any 
configurations which can be obtained from one 
another by rotation or reflection are given equal 
weight, they can be classified as follows: (i) 6 vertices 
in which the three incoming arrows are adjacent, 
(ii) 2 vertices in which the incoming and outgoing 
arrows alternate round the vertex, (iii) 12 other 
vertices. Examples of each of these three types are 
shown in Fig. 1. 

If we assign interaction energies €l' €2, €3, respec­
tively, to these three types of vertex, then the problem 

1 E. H. Lieb, Phys. Rev. Letters 18, 692 (1967); 18,1046 (1967); 
19, 108 (1967); Phys. Rev. 162, 162 (1967). 

2 F. Rys, Helv. Phys. Acta 36, 537 (1963). 

becomes the calculation of the partition function 

Z = 2, aPbqcrI(p, q, r), (1) 

where a = exp (-€I/kT), b = exp (-€2/kT), c = 
exp (-€3/kT) (k being Boltzmann's constant and T 
the temperature), and I(p, q, r) is the number of 
allowed ways of arranging arrows on the lattice so 
that there are p vertices of type (i), q of type (ii), and 
r of type (iii). 

With any lattice problem we have a choice of 
possible boundary conditions that can be imposed. 
In this case we prefer to use a helical boundary 
condition in which the right-hand site of a row is 
considered to be the same as the left-hand site of the 
row above, since this rather simplifies the subsequent 
transfer-matrix and eigenvalue equations. 

We can, therefore, consider a triangular lattice with N 
sites perrow and a total number of sites L, such that the 
sites can be ordered from left to right and upwards as 
indicated in Fig. 2. Further, parameters lXI' ... , 1X2L' 
f31' ... , f3 L can be associated with the bonds of 
the lattice as in Fig. 2, such that lXi (f3i) is zero if the 
arrow on the corresponding bond points upwards 
(to the right) and is unity if the arrow points down­
wards (to the left). 

The configurations of the arrows at the vertex i is 
then specified by the six parameters f3i-l, f3i' 1X2i-2N, 
1X2i- 2N+l' 1X2i- I , 1X2i and the condition that there be 
three incoming and three outgoing arrows can be seen 
to imply that 

f3i + f32i-1 + 1X2i = f3i-1 + 1X2i- 2N+I + 1X2i-2N' (2) 

Imposing cyclic end conditions on the he'iix, so that 
lXi-2L = lXi' f3i-L = f3i' the partition function (1) 

**** 
FIG. 1. Examples of the three types of allowed vertex with corre­

sponding interaction energies. 

1211 



                                                                                                                                    

1212 R. J. BAXTER 

+N-I 

i-I 

i.- N 

FIG. 2. The labeling of sites and bond parameters. 

can be written as 
L 

i+( 

Z L = ! II K({Ji' 1X2i- 1 , 1X2i' (Ji-l, 1X2i-2N+I, 1X2i-2N)' 
i=1 

(3) 

where the summation is over all values (0 or 1) of the 
IX'S and {J's, and the function K ensures the correct 
contribution of each vertex, i.e., K vanishes if the 
condition (2) is violated, else assumes the values 
a, b, or c,according as the vertex is of type (i), (ii), or 
(iii). 

Setting M = 2N - 1 and defining a 22N by 22N 

matrix V with elements 

Vp.",,, ... • "'MIP'."'I'.··· ."'M· 
= K({J, IX M-l , IX M, (J', IX~ , IXDb"'I"'a'b",.", ..... b"'M_.,"'M' , 

Eq. (3) can be written very simply as 

ZL = Tr VL. 

Thus, when L becomes large, 

ZL"""" AL, 

(4) 

(5) 

(6) 

where A is the greatest eigenvalue of the matrix 
V. Writing the corresponding eigenvector as 

hp(IXI' ... , IXM), 

it follows from (4) that A is given by 

Ahp(IXI ,"', IXM) = ! K({J, IXM-I' IXM' (J', IX", IX') 
fJ',a' a" 

x hp'( IX', IX", lXI' ••• , IX M-2)' (7) 

Since K vanishes unless its arguments in (3) satisfy 
the condition (2), the eigenvalue equation (7) has 
the important property that the number (J + IXI + 
... + IXM is conserved. Thus, one can look for an 
eigenvector hp(IXI ,'" ,IXM) whose elements are zero 
unless 

(J + IXI + ... + IX M = n, (8) 

where n can assume the values 0, 1, ... ,2N. When N 

is large, the ratio 
nJN= 1-Y (9) 

is the ratio of down arrows to up arrows in each row 
of the lattice. 

The nonzero elements of hoe lXI' ••• , IX M) must have 
exactly n IX'S equal to one, the rest being zero. For 
these elements one can therefore write 

hO(IXI,"', IXM) = /it, .... ln' (lOa) 

where jl' ... ,jn are the values of i for which IX; = 1. 
Clearly these can be ordered so that I ~ h < h < 
... <jn ~ M. Similarly, one can write 

htCIXI,"', IXM) = gl" .... i,,_I' (lOb) 

where 1 ~h < .. , <jn-l ~ M. 
Substituting the forms (10) of the nonzero elements 

of hp(IXI ,"', IXM) into Eq. (7), writing the values of 
the function K-namely 0, a, b, or c-explicitly in 
the appropriate terms, and for convenience replacing 
each jm by jm - 2, one obtains the set of equations 

Afit-2, ... ,1.-2 = a/j,,'" .1n ' (11a) 

'A/it- 2, ... ,i"_I-2,M = b/I,iI"" ,1"-1 + cg it ,··· ,1n-I 

+ C/2,1"", ,1,,-1' 

Ag,,-2'''',ln_I-2 = C/I ,ll'''',i,,_1 + ag1" .. ·.ln_I 

+ C/z,l,,··· ,1"-1 ' 

A/"_2, ... ,In _I-2,M-I = C/r,it,'" ,1n-1 + cgit.:·· ,1n _I 

+ a/z,l" ... ,In-I' 

(Ub) 

Ag1,- 2, ... • i .. _.-2.M-I = bg2,j" ... ,1n_. + C/r,2.1,,··· ,In-2 

+ Cgl •1,,··· ,1n-2' 

'A/;'_2, ... ,in_2-2,M-I,M = Cg2,l,,··· ,1,,-2 + a/r,2,1,,··. ';n-2 

+ cgl ,1,,'" ,1n_.' 

Ag i,- 2, ... ,In_.-2,M = Cg2•i ,,··· ,1n_. + C/r,2.1
"

", ,1,,-2 

+ agl ,11.··· ,1n-2' 
(Uc) 

'Ag it- 2 •... ,1n_S-2,M-l,M = agl ,2,1,,'" ,1,,-3' (lId) 

where the j's in each equation lie in the range 
3 ~ jl < j2 < ... ~ M. 

3. APPLICATION OF THE ANSATZ 

We now attempt to solve the eigenvalue equations 
(II) by assuming a form for the eigenvector. For the 
square lattice the appropriate ansatz is a sum of 
plane waves, I but for the present model we have to 
differentiate between the j's being odd and even, due 
to the fact that these correspond to down arrows on 
different types of diagonal bonds. It turns out that 
the most elementary extension of the plane-wave 
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ansatz that can possibly satisfy (11) is 

Jib'" ,in = '2, A m1o ··· ,m/Pml(j1) ... rpmn(jn), 

gi1o"',in -l = "2 Amlo···,mnVmlrpm.(jI)··· rpmn(jn-l), 
(12) 

where {m l ,"', mn} is any permutation of the 
numbers {I, ... , n} and the summations are over all 
such permutations. The functions rpm(j) are defined by 

4. SOLUTION OF THE ANSATZ EQUATIONS 

If we can solve Eqs. (14)-(19), then we have a 
solution of the eigenvalue equations (1). First note 
that (15) relates two A's which differ by a cyclic shift 
of the suffixes ml , ... , mn • Performing such a shift 
n times, therefore, leads to the condition 

n 

II Xl-Ny = 1 m m , (20) 
m~l 

rpm(j) = U mx~i-l), if j is odd, 

X i <i-2 ) 'f" = W m m , 1 J IS even, 

Xl' ... , Xn can be eliminated from Eqs. (14) and (20) 
(13) to give an alternative expression for A, namely, 

where m = 1, ... , n. 
We now try to choose the variables in (12) and (13) 

so as to satisfy (11). We first note that (lla) is 
satisfied if 

(14) 

Using this result and remembering that M = 2N - 1, 
the three equations (11 b) are satisfied if there exists a 
set of quantities YI , •.. , Yn such that 

where, for any m in the range 1 ,m ,n, Um' Vm , 

W m' X m' and Y m are related by the matrix equation 

ay~J(~:) ~o. (

aX Y - b -c m m 

-c aXm - a 

-c -c 
(l6) 

Using (14) and (15) and applying the ansatz to the 
three equations (llc), it is found that they are 
satisfied if 

forp = 1,2,3, where 

s~~m' = aYmWmXm,Vm, - bVmWm, 

- cUmWm, - cVmUm" 

s~~m' = aYmWmXm'Ym,Um' 

- cVmWm, - aUmWm, - cVmUm" 

s~~m' = aXmYmUmXm,Vm' - cVmWm, 

- cUmWm, - aVmUm,· 

Similarly, (lId) leads to the condition 

L [YmWmXm'Ym,Um,Xm"Vm" 

- VmUm'Wm"]Am.m',m",m ..... ,mn = 0, 

(17) 

(18) 

(19) 

where the summation is over all six permutations 
{m, m' , m"} of the numbers ml , m 2 , m3 • 

(21) 

For (16) to be satisfied nontrivially, the determinant 
of the 3 by 3 matrix must vanish, giving a relation 
between Xm and Ym. The ratios Um: Vm: Wm can 
then be calculated in terms of X m and Y m • 

It is at the three equations (17) that the major 
stumbling block to the ansatz occurs, for in order 
for these to be satisfied nontrivially the ratio s(p) '/ m,m 
s;:-~m must be the same for all three values of p. In 
general, it appears to be impossible to satisfy this 
condition. 

Some rather startling simplifications occur, how­
ever, when the vertex weights a, b, c satisfy the relation 

(a - C)2 = a(b - c). (22) 

(Note in particular that this includes the "triangular 
ice model," where a, b, c are equal.) In this case the 
solutions of the determinantal relation between Xm 

and Y m implied by (16) can be parametrized as 
rational functions of a third variable Zm' It turns out 
that the most convenient way of doing this is to first 
introduce a variable w such that 

c/a = 1 + w + w-l
• (23) 

Using (22), Zm can then be defined so that the solutions 
of (16) are 

(24) 

2 3 

Y 
-2 Zm - W Zm - W 

=W . 
m 1 - Z 1 - wz ' m m 

(25) 

-1 1 
U . V . W = 1 . W Zm - W. - WZm 

m" m" m' • 
1 - Zm Zm - W 

(26) 

Substituting the expressions (24)-(26) into the 
equations (18) and using (22) and (23), one obtains 
the unexpected but welcome result that 

s~~m' Zm - w3zm, 
--= 
s~!,m Zm' - w3zm 

(27) 
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for p = 1, 2, 3. Thus this ratio is indeed independent 
of p and (17) now represents one equation, rather 
than three. Further, making the same substitutions 
in Eq. (19) and using (15) and (17), it is found (after 
a very tedious calculation) that the equation is satis­
fied identically for any values of the Zm. 

It therefore remains to solve Eqs. (15) and (17). 
This can be done, provided only that 

n { 3} X Y. x-N = _ II _ Zm - W Zm' 
m m m 3 

m'=l Zm' - W Zm 
(28) 

for m = 1, ... , n. Thus the ansatz does in fact work 
when the restriction (22) is imposed on a, b, and c, 
for in principle Zl, ••. ,Zn can be chosen to ensure 
that the n conditions (28) are satisfied. Equation (14) 
or, equivalently, (21), then gives the eigenvalue A. 

5. SOLUTION FOR LARGE N 

The problem now is to solve Eq. (28), together with 
(24) and (25), for Zl' ••• , zn. In particular, we are 
interested in the limit when nand N become large, 
the ratio (9) being kept constant. 

We would like to apply reasoning similar to that 
used by y ang3 for the Heisenberg chain, and by Liebl 
for the square lattice models. An obstacle to this is 
the term X mY m on the left-hand side of Eq. (28) which 
arises from the helical boundary condition. However, 
the other terms in the equation depend exponentially 
on Nand n, so that the contribution of the factor 
Xm Y m may be expected to be negligible in the limit 
when these are large. More specifically, the error 
introduced in Zl,··· 'Zn by neglecting XmYm should 
be of order N-1, except for a relatively small number 
(of order log N) of parameters such that Zm c:::: 1 and 
for which Y m ,....., N. The author has not been able to 
prove these assertions in general, but they are 
certainly true for the special case c = 2a. 

It must be noted that such errors will be significant 
in Eq. (14), leading to a finite error in A. However, 
the situation can be saved by instead calculating A. 
from Eq. (21), for which such errors will be negligible. 

Neglecting therefore the term Xm Y m' re-arranging 
slightly, and using (24), Eq. (28) can be written as 

(29) 

where the function R(z), which depends implicitly on 
Z1, ••. , Zn' is defined by 

R(z) = {I - wz 1 :- W2Z}N IT {Z - W3
Z
:'}. (30) 

W - Z W - Z m'=l Zm' - W Z 

Inspection of these equations reveals that a solution 

3 C. N. Yang and C. P. Yang. Phys. Rev. 150, 327 (1966). 

can be chosen so that to any Zm there corresponds a 
Zm' such that Zm' = z;,i. In particular, this implies 
that R(l) = 1. The solution of (29) which maximizes 
A. can then be obtained by taking the logarithm of 
both sides so that 

log R(zm) = iTT(2m - n - 1), (31) 

for m = 1, ... , n, where the branch of the logarithm 
on the left-hand side is chosen so that log R(1) = O. 
This ordering ensures that zn+1-m = z;,1. 

It is apparent from (23) that W lies on the unit 
circle if c < 3a, while it is real and positive if c > 3a. 
These two cases will be considered separately in the 
next sections. 

6. THE CASE c < 3a 

In this case, W can be chosen to be 

W = exp (-irp), (32) 

where 0 < rp < iTT (the upper bound is required by 
the condition that c and a be positive). The variables 
Zl, .•• , Zn are then real and positive, so that one can 
set 

(33) 

where un+1-m = -um . 

Define a function 

F(e, u) = TT-1 tan-1 {cot !e tanh !u} (34) 

such that F(e, u) is a continuous function of u for 
- 00 < U < 00 and is zero when u = O. Then, using 
the form (30) of R(z), Eq. (31) becomes 

!(2m - n - 1) = NF(rp, um ) + NF(2rp, urn) 
n 

- 2 F(3rp, Um - um')' (35) 
m'=l 

As nand N become large, the ratio (9) being held 
fixed at some value not greater than one, the um's 
tend to a continuous distribution in some range 
(-Q, Q) such that -Q < U1 < ... < Un < Q. If 
N p(u) du is the number of urn's in the interval 
(u, u + du), then Eq. (35) becomes in the limit 

lUp(U') du' = F(rp, u) + F(2rp, u) 

-L: p(u')F(3rp, u - u') du', (36) 

where the limit Q is defined by the condition 

(Q p(u) du = n/N = 1 - y. 
J-Q 

(37) 

The eigenvalue A. can be expressed in terms of the 
Urn by Eqs. (21), (25), and (33). Taking the continuum 
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limit then gives 

I A 1fQ d ()l {COShU-COS21> og - = 2 Up U og 
a -Q cosh U - 1 

cosh U - cos 31>} X . 
cosh U - cos 1> 

(38) 

When the number of up and down arrows in each 
row of the lattice are equal, n = Nand y = O. In 
this case, Q = 00 and (36) can be solved by Fourier 
transforms, giving 

1 foo eikUdk 
p(u) = - . 

27T -00 2 cosh (k1» - 1 
(39) 

Substituting this result into (38) and performing the 
integration with respect to u gives: 

A. foo dk (1 - e-2k.)(1 + e-k
.) 

log - = P - . (40) 
a -00 k (~. - 1 + e-k.)(1 - e-2k.-) 

Three particular cases are of special interest: 
(i) 1> = i7T, b = a, and c = O. The integrand in (40) 

is an odd function of k, so we find as expected that 
A = a. 

(ii) 1> = i7T, a = b = c. This case can be regarded 
as the triangular-lattice equivalent of the ice model. 
Evaluating p(u) explicitly from (39), substituting 
the resulting expression into (38) and defining a new 
variable of integration t = exp (uI3), we find that the 
integrand of (38) is an even function of t. Hence 
the integration can be extended over the whole of 
the real t axis, and on closing the contour round the 
upper half-plane it is found that 

AJa = -i~3 ,-.; 2.598. (41) 

(iii) 1> = t7T, b = 3a, and c = 2a. w3 = -1, so that 
the Eqs. (28) and (29) reduce to sets of single equa­
tions for single variables. The integration in (40) can 
be completed round the upper-half k plane; summing 
over residues then gives 

log ~ = 3~3{~ _ ~ + ~ _ ~ + _1 _ ~ + . oo} 
a 7T 12 52 72 112 132 172 

(42) 
and, hence, AJa c::::: 5.03. 

7. THE CASE c > 3a 

When c > 3a it follows from (23) that w can be 
chosen to be real and greater than one. In this case 
Z1, ••• , Zn lie on the unit circle, so one can write 

Zm = exp (i0m)' (43) 

Define a function 

G(w, 0) = 1. tan-1 {W + 1 tan~} (44) 
7T w-1 2 

such that G(w, 0) is a continuous function for 0 for 
-7T < 0 ~ 7T and is zero when 0 = O. Then, on using 
(30) and (43), Eq. (31) becomes 

t(2m - n - 1) = NG(w, Om) + NG(w2
, Om) 

n 

- I G(w3
, Om - Om') (45) 

m'=l 

for m = 1,'" ,no When y = 0 and N-+ 00, the 
Om's tend to a continuous distribution in the range 
(-7T,7T) such that -7T < 01 < ... < On < 7T and 
0n+l-m = -Om· Letting Np(O) be the density of 
Om's and proceeding as in Sec. 6, we find that 

8. TRANSITION REGION c o::::e 3a 

It is interesting to compare the forms (40) and (47) 
of the free energy. By deforming the contour of integra­
tion, we find that the right-hand side of (40) is an 
analytic function of 1> in the upper and lower half­
planes, and on the interval (0,7T) of the real axis. 
When 1> lies in the upper half-plane, which from (32) 
implies that I wi > 1, the integration in (40) can be 
completed round the upper-half k plane, giving: 

log ~ = 2 log w + I ! (1 - w-
2n

)(1 + w-
n

) 

a n=1 n wn 
- 1 + w-n 

+ i.J3 I _6_{1 - exp [27T
2

i 16n + 11]}-1. (48) 
n=-oo 6n + 1 31> 

It is found that log (Ala) can be formally expanded 
in powers of (c - 3a)la and that the expansions are 
the same for c above and below 3a. However, on 
comparing (47) and (48) it is apparent that log (AJa) 
has a different analytic form in the two cases, and that 
the difference has an essential singularity at the 
transition point 1> = O. Thus, the system undergoes 
an infinite-order phase transition similar to that of 
the square-lattice F model. 

9. SUMMARY 

An ansatz solution of the triangular-lattice F model 
has been found when the vertex weights a, b, c satisfy 
the restriction (22). For such values the system under­
goes an infinite-order phase transition at the point 
b = 7a, c = 3a. 

When a = b = c = I the model can be regarded 
as the triangular-lattice equivalent of the ice model, 

and we find that A = N3 c::::: 2.598 [Eq. (41)]. A 
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rough estimate of this value could have been obtained 
by noting that for a lattice of L sites there are 3L 
bonds, but only 20 out of the possible 64 arrow 
configurations at a vertex are permitted. Neglecting 
correlations between vertices then suggests that 

Z ro-J 23L(20/64)L or A ~ 2.5. (49) 

These values can be compared with the corresponding 
results for the square lattice, for which the exact and 
approximate results are A = (t)! ro-J 1.540 and A ro-J 1.5 
respectively. It is remarkable how accurate the 
approximations are in each case. 

The author has also investigated the triangular­
lattice F model by using toroidal, rather than helical, 
boundary conditions and, again, found that the 
elementary ansatz works only when the restriction (22) 

JOURNAL OF MATHEMATICAL PHYSICS 

is satisfied. The toroidal boundary conditions have 
the advantage that one obtains Eq. (29), rather than 
(28). However, the transfer matrix is considerably 
more complicated. 

It is interesting to note that the difficulties en­
countered when the restriction (22) is not satisfied are 
similar to those that occur in some nonplanar prob­
lems. Thus one might hope (perhaps optimistically) 
that a general solution of the triangular-lattice F 
model, if it could be obtained, would shed some light 
on these also. 

10. ACKNOWLEDGMENT 

The author is indebted to Professor E. H. Lieb for 
suggesting this problem and for several useful 
conversations. 

VOLUME 10, NUMBER 7 JULY 1969 

Covariant Electromagnetic Potentials and Fields in 
Friedmann Universes * 

P. c. PETERS 

Department of Physics, Unil!ersity of Washington, Seattle, Washington 

(Received 15 January 1969) 

Electromagnetic potentials and fields are found for arbitrary four-current densities in Friedmann uni­
verses. A choice of gauge is made so that the potentials are similar to the flat-space potentials. A formal­
ism is developed which allows the construction of potentials and fields which are covariant with respect 
to spatial transformations. It is shown explicitly how these potentials are related to the flat-space 
potentials through conformal and gauge transformations. Some features of the solutions in the finite 
models are discussed with reference to problems of interpretation raised recently by Katz. 

1. INTRODUCTION 

The Friedmann universesl are the most general 
simply connected cosmological models which satisfy 
the requirements of homogeneity and isotropy and 
which satisfy the Einstein field equations with matter 
taken to be a smoothed-out dust. Since observations 
seem to be consistent with these assumptions on the 
large scale,2 the Friedmann models are usually 
considered to be the most accurate representation of 
the large-scale structure of the universe one has at 
present. Most of the observations which are relevant 
to cosmology are of electromagnetic origin. One 
would, therefore, desire a complete description of 
electromagnetism in the Friedmann universes. 

• Work supported in part by the National Science Foundation. 
1 See, for example, the discussion in L. Landau and E. Lifshitz, 

The Classical Theory of Fields (Addison-Wesley Pub!. Co., Reading, 
Mass., 1962), Chap. 12. 

2 A. Sandage, Astrophys. J. 133, 355 (1961). 

Much simplification arises in the study of electro­
magnetism in the Friedmann models from the facts 
that the electromagnetic field equations are con­
formally invariant and that the Friedmann models are 
conformally related both to the static homogeneous 
models and to flat space.3 One result of this is that 
electromagnetic signals in Friedmann universes are 
propagated only on the light cone, without scattering 
off of the Riemann tensor, or radiation,. tail, as in the 
case in a general curved space.4 

A formal solution for the electromagnetic potentials 
AI' in any conformally flat space-time has been given 
by Hobbs. 5 He showed that a choice of gauge could be 
made so that the Green's function for the potential 
propagates along the light cone, but did not try to 
find explicit expressions for the potentials for the case 

3 L. Infeld and A. Schild, Phys. Rev. 68, 250 (1945). 
• B. DeWitt and R. Brehme, Ann. Phys. (N.Y.) 9,220 (1960). 
5 J. M. Hobbs, Ann. Phys. (N.Y.) 47,166 (1968). 
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of the Friedmann models. Katz6 has derived explicit 
expressions for the electromagnetic field Fllv in the 
Friedmann models. In that paper, Maxwell's equa­
tions were solved first in static homogeneous models 
and then a conformal transformation was made to 
the Friedmann models. These fields, however, were 
valid only in a particular pseudo-rectangular coordi­
nate system. 

In this paper we derive the electlJmagnetic po­
tentials and fields for the Friedmann models in a form 
which is covariant with respect to coordinate trans­
formations in 3-space. This allows a considerable 
simplification in the expression for the potentials and 
fields and also makes apparent the physical inter­
pretation of the various terms in the expressions. 
In Sec. 2 we state the problem to be solved and the 
method of solution. In Sec. 3 we derive expressions for 
second and higher covariant derivatives of the 
invariant distance which are then used in Sec. 4 to 
derive expressions for the potentials and fields. In 
Sec. 5 we show explicitly how our potentials for a 
point charge can be obtained from the Lienard­
Wiechert potentials of fiat space by a change of 
coordinates and change of gauge. In Sec. 6 we discuss 
the nature of the solution obtained, with particular 
reference to points raised by Katz about the solutions 
for the closed models.6 

2. TRIAL POTENTIALS 

The metric for the Friedmann universes can be 
written in the form1.7 

ds2 = gllv dx ll dxv = dt2 
- a\t)[dp2 + f2(p) dQ2], 

(2.1) 
where 

!(p) = sin p, closed 3-space (k = + 1), 

p, fiat 3-space (k = 0), 

= sinh p, open 3-space (k = -1), 

dQ2 = d()2 + sin2 () dT2, 

and aCt) is the expansion factor which is determined 
by solving the field equations with matter present. l 

By a change of variables, dt = a dT, the metric takes 
the form 

ds2 = a2(T)[dT2 - (dp2 + f2(p) dQ2)] == a2(T) d;S2, 

(2.2) 

which shows that the metric for the Friedmann models 

6 A. Katz, J. Math. Phys. 9, 1964 (1968). 
7 Greek indices take values from 0 to 3; Latin indices are restricted 

to spatial components I to 3. The signature afour metric is -2. We 
adopt a system of units in which c = I. Covariant differentiation 
will be denoted by a semicolon (;), ordinary differentiation by a 
comma (,). 

is conformally related to the metric for the static 
homogeneous models through the factor a2(T). Since 
the equations for the electromagnetic potentials AIL' 

AIl;/< - A;.;/' = 41TJ1" (2.3) 

are invariant under the conformal transformations 

, 'I' 
gllv -+ gllv = e gllv, 

gllV -+ gllV' = e-'I' gllV, 

AIl-+A~ = All' 
(2.4) 

JIL-+J~ = e-'I'JIl , 

the electromagnetic potentials in the Friedmann 
models are the same as in the static homogeneous 
models for conformally related sources. For this 
reason we will first consider the electromagnetic 
potentials in the static homogeneous models. Of 
course, the potentials are not unique because of the 
invariance of the field equations (2.3) under the gauge 
transformation 

A~ = All + T. Il ' 

The electromagnetic field tensor 

(2.5) 

(2.6) 

is, however, both gauge-invariant and conformally 
invariant. 

In the static homogeneous models there is a natural 
set of coordinates for which goo = 1 and gOi = O. 
Time components of vectors and tensors then behave 
as scalars under transformations involving only 
spatial coordinates. We therefore find it desirable to 
find expressions for the electromagnetic potentials 
which are covariant with respect to transformations in 
3-space. The arbitrariness associated with the gauge 
invariance (2.5) is removed by the assumption that the 
time component of the potential Ao depends only on 
the time component of the current density JO and that 
the spatial components of the potential Ai depend 
only on the spatial components of the current density 
P. This assumption is made in analogy with the 
structure of the solution for the potentials in fiat space 
in the Lorentz gauge. However, it should be noted that 
the curved-space solutions which satisfy the above 
criteria may not satisfy the curved-space analog of the 
Lorentz gauge, i.e., AIl ;1l = O. 

Because the Friedmann models, and thus also the 
static homogeneous models, are conformally fiat,3 
the electromagnetic field Fllv(x, T) depends on the 
current density JIl(X', T') only at the retarded time T' 
given by 

T' = T - 'P'(x, x'), (2.7) 

where 'P'(x, x') is the biscalar distance between the 
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points x and x', measured along a geodesics in the 3-
space which joins the points x and x'. We assume that 
the potentials also have this property of being sharply 
propagated along the light cone. The general form of 
Ao which incorporates this dependence is then 

Ao(x, T) = f F('Y)JO(x', T')b(T' - T + 'Y) d4V', (2.8) 

where d4V' = (_g)t d4x' and F('Y) is a function of the 
invariant distance between x and x' which will be 
determined by substitution into the field of equations 
(2.3). 

The trial solution for the spatial components of the 
potential, Ai' requires the use of some bivector 
Cij'(x, x') to relate the current density at x' to the 
potential at x. Geometrical bivectors4 can be formed 
from the parallel propagator9 gii' , and first and higher 
derivatives of the invariant distance, e.g., 'Y,i'Y,i" 
etc. However, we will show that, in the static homo­
geneous models, second and higher derivatives of 'Y 
can be reduced to first derivatives of 'Y, the parallel 
propagator, and known scalar functions of the 
invariant distance 'Y. It therefore suffices to consider 
the trial solution 

Aix, T') = -f [gkm,G('Y) + 'Y;k'Y;m.H('Y)]Jm'(x', T') 

X b(T' - T + 'Y) d4V'. (2.9) 

The functions F('Y) , G('Y) , and H('¥) are deter­
mined by substituting (2.8) and (2.9) into the field 
equations (2.3), However, in order to reduce th~ 

resulting expressions, we must know how to express 
derivatives of gii' and higher than first derivatives of 
'I" in terms of simpler quantities. Synge9 has given such 
expressions for the general case of an expansion in 
powers of the Riemann tensor which one finds useful 
for approximation methods. For the static homo­
geneous models, we can derive exact expressions for 
these derivatives, so that we do not have to assume 
that the Riemann tensor is small. This derivation is 
done in the next section. 

3. GEOMETRICAL RELATIONS 

The world function9 Q(x, x') for the 3-space is 
related to the invariant distance 'Y(x, x') by 

Q = t'Y2. (3.1) 
Since 

(3.2) 

8 In the k = + I, closed models, there is more than one geodesic 
joining the two points and, therefore, more than one 'Y. We assume 
that all possible 'Y's contribute. This point is discussed further in 
Sec. 6. 

• J. L. Synge, Relativity: The General Theory (North-Holland 
Publ. Co., Amsterdam, 1960), Chap. II. 

the derivatives of 'Y satisfy 

'Y;k 'Y;k = 'Y;k,'Y;k' = 1. (3.3) 

Therefore, 'Y;k is a unit vector at x directed tangent to 
the geodesic from x' to x and 'Y;k' is a unit vector at 
x' directed tangent to the geodesic from x to x'. The 
bivector parallel propagator9 gij'(X, x') relates com­
ponents of a vector Ai at a point x to the components 
of that same vector parallel-transported along the 
geodesic joining the two points x and x' : 

Ai = gii,Ai', Ai' = gj'iAi. (3.4) 

Derivatives of Q and'Y with respect to x are related to 
those with respect to x' by the parallel propagator 

Q;k = - gkm,Q;m' , 

(3.5) 

from which it follows that, if f('Y) is any function 
of 'Y, 

(3.6) 

The relationship between the derivatives of Q and 
'Y and the parallel propagator can be derived from the 
relations written down by Synge,9 applied to our 
particular case of a 3-space of constant curvature. We 
consider a two-dimensional family of geodesics radi­
ating from a fixed point P (coordinates Xi) with 
affine parameter u along the geodesics and parameter 
v which varies continuously from geodesic to geodesic. 
This determines a 2-space Xi == Xi(U, v) in which we 
have 

(3.7) 

where Ui is the unit tangent vector along the geodesics 
and Vi is proportional to the deviation vector between 
adjacent geodesics. From the relations (3.7) we have 

bUi bVi bUi 

---, -=0, 
bv bu bu 

(3.8) 

where ojov (or ojou) implies absolute differentiation 
along the curve u = const (or v = const). 

If we consider a point 15 (coordinates Xi) lying on a 
curve C(v) with constant parameter ii, then we have 
from the relations of Synge9 that 

(3.9) 

and 
(3,10) 

where t"u = ii - u. The relations involving derivatives 
of Q are obtained by Synge by varying the end point 
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P along the curve C(v). This results in the equalities 

n.komVm = -~u bUk = -~u bVk 
. . bv bu 

= -gkriiVm - LU[(it - U')Kj'i'gki'~'] du', 

(3.11) 

m bU", bY,!; 
no,!;omV =~u-=~u-

. . bv bu 

= V", - LU[(U' - U)Kj'i'g",i'~'] du', (3.12) 

where the affine parameter is u at P, it at P, and u' at 
intermediate points p' along the geodesic between P 
and P. Kij is given by 

Kij = RikimUkum (3.13) 

and Vi satisfies the equation of geodesic deviation 

b
2

V
i + Ki vm = 0 

bu2 m • 
(3.14) 

For the case of static homogeneous universes, the 
spatial Riemann tensor is 

(3.15) 

with A. = k/'~, where k = + 1, 0, -1 corresponds to 
a closed, fiat, or open model and '0 is the radius of 
curvature of the 3-space. Since the static homogeneous 
models will be related to the Friedmann models by a 
conformal transformation, we may, without loss of 
generality, choose '0 = 1. Also we will derive in 
detail the results only for the closed model k = + 1, 
the other cases being found in a similar manner. 
Since UiUi = 1, we have, from (3.15) and (3.13), 

(3.16) 

so that the equation of geodesic deviation (3.14) 
becomes 

(3.17) 

We now break up Vi into parts parallel and perpen­
dicular to the geodesic 

Vi = (UiViUi) + (Vi - UiViU i) 

== V11 + vi (3.18) 

and since b(ViUi)/bu = 0, we then have that 

b2V i 

--II =0 
bu 2 

' 

b2Vi i 

bu2 + Vol = O. (3.19) 

The solutions to these equations for Vi' at an inter­
mediate point with parameter u' are then 

ViI = gfliV II -_-- , 0, 0, m[u' - uJ 
u-u 

Vi' = (Vm[Sin (u' - U)] 
1. gm 1. 0 (_ )' sm u - u 

(3.20) 

where the two constants of integration are chosen so 
that Vi' -+ 0 when u' -+ u and Vi' -+ Vi when u' -+ it. 
The parallel propagator is, of course, a constant under 
absolute differentiation along the geodesic. 

When the expression for Kii , Eq. (3.16), is sub­
stituted into (3.11) and (3.12), one finds that the only 
contribution to the integrals in those two expressions 
come from V 1.1" The expression for V.l.i' from (3.20) 
allows us to explicitly perform the integrations in (3.11) 
and (3.12). Making use of the defining relations for 
V 1.1" Eq. (3.18), then leads to the two expressions 

n Vm U U m (it - u) 
;k;m = - k m V - -.->---~-

sm (it - u) 

X [gkmVm - UkUmV m], (3.21) 

Q;,!;;mVm = U,!;UmVm + (it - u) cot (it - u) 

X [V'" - U",UmV
m

]. (3.22) 

Since the vm are arbitrary, the coefficients of vm must 
be equal on each side of each expression. Using Eqs. 
(3.9) and (3.10), and rewriting for the case of a general 
'Y(x, x'), we find that, including the k = 0 and 
k = -1 cases, which follow similarly: 

where 

'Y;k;m' = - y('Y)[gkm' + 'Y;k 'Y;m']' 

'Y;k;m = +Z('Y)[gkm - 'F;k'Y;m], (3.23) 

y('Y) = csc 'Y, k = + 1 , 

= 1/'Y, k = 0, 

= csch 'Y, k = -1, 

z('Y) = cot'Y, k = +1, 

= 1/'Y, k = 0, 

= coth 'Y, k = -1. 

The only other relation we need is an expression for 
the derivatives of the parallel propagator gkm" Again 
we make use of the equation given by Synge9 which 
considers the change in the parallel propagator as the 
end point P is moved along the curve C(v): 

g.hn;nvn = - J,.u[g'!;i,gmi'Ri'i'a'b'Va'Ub,] du'. (3.24) 

When the expression for the Riemann tensor (3.15) 
is substituted into (3.24), we again find that only V1.a' 
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contributes to the integral. Using the derived expres­
sion for V..La' , Eq. (3.20), we can evaluate the integral 
in (3.24) to give 

g,fm;"V" = -tan (t'Y)[YkUm - U,fgm" V"]. (3.25) 

Since this must hold for arbitrary V", we have for the 
general case, including the results of the similar deri­
vations for k = ° and k = -1, 

(3.26) 

where 

w('Y) = tan t'Y, k = +1, 

= 0, k = 0, 

= -tanh t'Y, k = -1. 

Equations (3.23) and (3.26) allow us to reduce any 
expression involving higher than first derivatives of 
'l" and any derivatives of gij' to expressions involving 
only 'l", gii" and first derivatives of'Y. This is required 
for our derivation in the next section. 

4. DETERMINATION OF THE POTENTIALS 
AND FIELDS 

The trial potentials (2.8) and (2.9) are now substi­
tuted in the field equations (2.3) to find what restric­
tions are placed on the functions F(,¥), G('Y) , and 
H('Y). Because of current conservation 

J Il _ ('jJo Jk - ° ." - + 'k- , 
.~ aT . (4.1) 

time derivatives of the charge density JO can be ex­
pressed as the divergence of the current density Jk. 
Whenever we have a JO' together with a derivative 
of the 0 function in (2.8) and (2,9), we can integrate 
by parts with respect to TI and use (4.1) to express 
aJo'jaT' as the divergence of the current density, 
J;k,k' • The derivative with respect to the k' can likewise 
be integrated by parts, leaving Jk' without any deriv­
atives. We will reduce terms in this way whenever 
possible so that the possible forms of the terms in our 
expressions are independent of each other for arbitrary 
JIl . We further reduce expressions through the use of 
rela,tions (3.23) and (3.26) so that only 'Y, gik', and 
first derivatives of 'Y appear in the final expressions. 
After these reductions are made, we are left with a 
series of differential equations for the unknown 
functions F, G, and H, which we then solve using 
appropriate boundary conditions. 

The function F('Y) in (2.8) may be determined by 
considering the particular case where Jk = ° and JO is, 
therefore, time-independent. In this case the condition 

on F('l") from (2.8) and (2.3) is 

47TJO = -AO;k;k = -J JO'F;~O(T' - T + '1'') d4V', 

(4.2) 

where terms resulting from differentiation of the 0 
function vanish since JO' is time-independent. The 
condition which F must satisfy is therefore 

F;~ = -47T03(X - x')j(_g,)t, (4.3) 

where, from (3.3) and (3.23), 

F;~ = F" + 2F' cot 'Y. (4.4) 

The general solutIOn of (4.3) and (4.4) is 

F = cot'l" + C, (4.5) 

where C is a constant of integration. 
Surprisingly, the functions G and H in (2.9) can also 

be determined from the equation for JO if we consider 
the case of arbitrary JIl. This means that the functions 
F, G, and H are over-determined since this procedure 
does not yet utilize any information contained in the 
field equations with Jk as the source. After finding G 
and H, we must therefore show that they are con­
sistent with these latter equations as well. When (2.8) 
and (2.9), with F = cot'l" + C, are substituted in 
Eq. (2.3) with flo = 0, we find from relations (3.23) 
and (3.26) that G and H must satisfy the equation 

J {J°'[(cot 'Y + C)o" + (2C cot 'Y - 2)0'] 

+ 'l";k,Jk'[(G - H)o" + (G' - H' - 2G tan t'l" 

- 2H cot 'l"wn d4V' = 0, (4.6) 

where 0 === OCT' - T + 'Y) and a prime on G, H, and 
o indicates differentiation with respect to the argu­
ment. The terms in JO' can be reduced to terms in 
Jk' by first integrating by parts with respect to T', 

using (4.1), and then integrating by parts with respect 
to xk

'. This yields the condition 

f 'Y;lc,Jlc'[(G - H - cot'l" - C)o" 

+ (G' - H' - 2G tan t'Y - 2H cot'l" 

+ 2 - csc2 'l" - 2C cot 0/)0' 

+ (2C csc2 'l")0] d4V' = 0. (4.7) 

Because (4.7) must hold for arbitrary Jk', the coeffi­
cients of b", b', and b must vanish separately since 
these indicate different order time derivatives of Jk'. 
From the coefficient of 0 we find that C = 0. Re­
quiring the coefficient of b" vanishes gives G = 
H + cot'l" which, when substituted into the coeffi­
cient of b', gives the unique solution 

H = tan t'Y; G = csc'Y. (4.8) 
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Thus far we have found the potentials by using the 
trial potentials (2.8) and (2.9) in the field equations 
(2.3) with fl = O. We have to verify that our potentials 
are solutions of these equations with fl = k as well. 
This procedure is carried out in a straightforward 
manner. The result is that our potentials are solutions 
of the full set of Eqs. (2.3). Including the similar 
results for k = 0 and k = -1, we now state our 
solution to be the potentials (2.8) and (2.9) with the 
functions F, G, and H given by 

F('Y) = cot'Y, k = +1, 

= 1/'Y, k = 0, 

= coth'Y, k = -1, 

G('Y) = csc 'Y, k = +1, 

1/'Y, k = 0, (4.9) 

= csch 'Y, k = -1, 

H('Y) = tan t'Y, k = + 1, 

0, k = 0, 

= -tanh t'Y, k = -1. 

By explicit calculation we find that 

A/' = 2 J 'Y;kJk'b(r' - T + 'Y) d4V', (4.10) 

for the cases k = +1 and k = -1, and A/' = 0 for 
k = O. 

The electromagnetic field Fp.v' which is the physically 
meaningful quantity, is found from the potentials 
using (2.6). Again whenever aJo' appears together with 
a b', we reduce this to a Jk' term as before. The 
electromagnetic field thus derived for the three cases is 

FOk = J {G('Y) [gkm' + 'Y;k'Y;m,]Jm'[F('Y)b - b'] 

+ G2('Y) ['F;k'Y; m,]ffl' - 'F;kJO']b} d4 V', (4.11) 

Fkm = J {G('Y)[gkn,'Y;m - gmn,'Y;dr' 

x [F('Y)b - b'l} d4V', (4.12) 

where F('Y) and G('Y) are given in (4.9) and b = 
beT' - T + 'Y). 

The electromagnetic potentials and fields thus given 
by (2.8), (2.9), (4.11), (4.12), together with (4.9), are 
those appropriate for a static, homogeneous cosmo­
logical model having a metric given by ds in Eq. (2.2). 
To express the solution in terms of the metric ds of 
Eq. (2.2) it is necessary to conformally transform the 
quantities appearing in the solution according to (2.4). 
Both Ap. and Fp.v are invariant, but Jp.' -+ a4(t')Jp.' 
under this transformation. Usually the Friedmann 

models are given as the metric (2.1) in which co­
moving coordinates are chosen for the matter in the 
universe. (2.l) is obtained from (2.2) by a coordinate 
transformation dT = dt/a(t), so that any time com­
ponents of vectors in our expressions undergo a 
transformation as well. Also we can write d4 V' = 
dT' d3 V' = a-1 dt' d3 V' = a-4 ( -g')! d4x'. Therefore 
we can write our result for the electromagnetic po­
tentials and fields in the Friedmann models in the 
metric of (2.1) as 

Ao(x, t) = a~t) J :~7; JO(x', t')b(s)( - g/)! d4x', 

(4.13) 

Aix, t) = - _1 J [d"m,G('Y) + nknmB('Y)] 
a( t) a( t') 

X Jm'(x', t')b(S)(_g/)! d4x ' , (4.14) 

FOk(x, t) = + J {G('Y) [dkm, + nknm,] 
a (t) a(t') 

X Jm'(x/, t')[F(\f')b(s) - b'(s)] 

G2('Y) + -- [n n ,Jm'(X' t') 
a(t') k m , 

- nkJo'(x/, t')]b(s)}(-g/)! d4x', (4.15) 

Fkm(X, t) = + J {G('Y) [dkl,n m - dm1,nk]J1'(X', 1') 
a (t) a(t') 

where 

x [F('Y)b(s) - b'(S)]}( - g')! d4x ', (4.16) 

f t'dt" , 
s = - + 'Y(x, x'), 

t a(t") 

nk = a(t)\{1';k' nk, = a(t')'Y;k" 

dkm, = a(t)a(t')gkm" 

(4.17) 

(4.18) 

(4.19) 

and F, G, and H are given by (4.9). Quantities with 
spatial indices now have the tens oral properties 
associated with the metric (2.1) so that, e.g., 

nknk = nkn1g k1 = -(I/a 2)(a'JI';k)(a'Y;I)gtiJ = -1, 

where gri) is the positive-signature metric of the space 
of constant curvature. 

A simple physical interpretation can be given to the 
quantities in (4.13)-(4.16). 'V(x, x') can be expressed 
as L(x, x', t)/a(t), where L is physical distance between 
the points x and x' at some time t. nk is a unit vector at 
x directed along the geodesic in the 3-space of constant 
t from x' to x, with a similar interpretation for nk" 

dkm, parallel propagates the direction of the current 
density pn' from x' to x along the geodesic without 
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changing any magnitudes. The !5(s) indicates simply 
that electromagnetic influences propagate only along 
null geodesics. 

The potentials and fields of a charge q can be found 
using the expression for the 4-current density 

JI'( ) - f dzl' !5
4
(x - z(s» d x - q ! s, 

ds (-g) 
(4.20) 

where xl' = zl'(s) is the parametric equation of the 
path. Substituting (4.20) into (4.13) and (4.14) gives 
the potentials (analogous to the Lienard-Wiechert 
potentials) : 

A ( ) 
_ qF(lf') 

ox, t - , 
a(t)O' 

(4.21) 

A ( ) 
__ q[G(lf') diem' + H(lf')nlenm,]vm'(t') 

k x, t - , 
a(t)O' 

(4.22) 

where the path has been taken to be z(t'), t' being the 
retarded time obtained from setting s = 0 in (4.17). 
If' is shorthand for If(x, z(t'». 0' == 1 + nle,vk'(t') 
and vie' = dzk(t')/dt'. The fields can be found in a 
similar manner. 

5. TRANSFORMATION FROM FLAT SPACE 

Since the Friedmann models are conformally fiat, 
it should be possible to derive the potentials and fields 
from the flat-space potentials and fields using the 
conformal transformations (2.4), coordinate trans­
formations, and possibly gauge transformations. 
Since we showed in Sec. 4 how the potentials in the 
Friedmann models can be obtained from those in the 
static homogeneous models, it will suffice to show that 
the potentials (2.8) and (2.9) in the static homo­
geneous models can be obtained from the usual 
flat-space Lienard-Wiechert potentials. lO To simplify 
the procedure, we assume that we have the k = + 1 
model, whose metric is 

ds2 = dor2 - dp2 - sin2 p d02. (5.1) 

We consider the case of a point charge which is at the 
origin p' = 0 at the retarded time or' = 0, so that the 
potential we write will be valid at coordinate p only 
at the time or = p. We assume that the velocity of the 
charge is in the () = ° direction. The appropriate 
potentials are then just (4.21) and (4.22) with a = 1, 
If = p, since p is the physical distance from the origin 
measured radially outward. The only quantities which 
we need to evaluate explicitly in (4.22) are the com­
ponents of the parallel propagator gkm" Consider the 
change in a vector as it is parallel propagated radially, 

10 Reference 1, Chapter 8. 

which is along a geodesic in 3-space. Then 

dv
i 

= -{/k}v
1 

dx
le 

= -{/l}v
i 

dp. (5.2) 

From (5.2) and the metric (5.1), we see that the radial 
component of the velocity vector is unchanged under 
parallel transport. Thus gu' = 1. But since the mag­
nitude of v is unchanged, this implies also that V2V2 

is unchanged under the transport (5.2), which may 
also be explicitly verified from (5.2). Therefore, the 
potentials with the metric (5.1) are explicitly given as 

Ao = q cot P , 
1 - v cos () 

Al = _ qv cot P cos () , (5.3) 
1 - v cos () 

A _ qv sin () 
2 - 1 _ v cos () , 

which are valid at coordinate p at the time 7' = p. 
The metric for flat space may be taken to be 

ds2 = dt 2 - dr2 - r2 d02 , (5.4) 

in which the flat-space potentials in the Lorentz gauge 
for a charge at the origin r' = 0 at time t' = 0 are 

q 
Ao = , 

r(l - v cos () 

Al 
__ _ qv cos (j , 

(5.5) 
r(1 - v cos () 

A 
_ qv sin () 

2- , 
(1 - v cos () 

where again the expressions are valid only at the time 
t = r. The succession of coordinate transformations3 

t + r = tan~, 
t - r = tan 'fj, 

~ - 'fj = p, 

~+'fj=or 

transforms (5.4) into the form 

ds2 = ! sec2 t(7' + p) sec2 t(or - p) 

(5.6) 

X [d7'2 - dp2 - sin2 p d02], (5.7) 

which is just a conformal transformation of the static 
homogeneous metricu (5.1). Since A,.. is unchanged 
under a conformal transformation, the potentials (5.5) 
when transformed by the coordinate transformations 

11 The transformation is not globally valid since the two spaces 
have different topological properties. This presents no problem for 
our treatment here since we can easily extend the transformed space­
time to that of the static homogeneous one. 
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(5.6) should agree with the curved space-time po­
tentials (5.3) up to a gauge transformation. Note that 
the point t = r = 0 coincides with the point 7 = P = 
0, the position of the charge. Also the condition that 
t = r in (5.5) is the same condition that 7 = P in 
(5.3) as required by the fact that both potentials have 
a contribution from the source only at the retarded 
time. 

If we denote by a bar quantities referred to the 
coordinate system defined by (5.7), then the relation 
between the barred and unbarred potentials is 

- 1 + cos 7 cos P A sin 7 sin P A 
Ao = 0 + 2 1, 

(cos 7 + cos p)2 (cos 7 + cos p) 

- I + cos 7 cos P A sin 7 sin p A 
Al = 1 + 0, 

(cos 7 + cos p)2 (cos 7 + cos p)2 

(5.8) 

When we substitute the potentials (5.5) into (5.8), use 
the relation r = sin p/(cos 7 + cos p), and set 7 = p, 
we find that the barred potentials can be written as 

_ q cot P q 
Ao = + - tan p, 

I - v cos () 2 

qv cot P cos () q 
Al = + - tan p, (5.9) 

1 - v cos () 2 

_ qv sin () 
A2 = --''---­

I - v cos () 

These are just the potentials (5.3) in the static homo­
geneous model aside from the (q/2) tan p term. How­
ever, since this term does not depend on the velocity 
of the charge v, we can find a gauge function cp(p, 7) 
such that IP.o(p, p) = IP.I(P, p) = -iq tan p. The 
gauge transformation 

cp = iq In [cos p + cos 7] (5.10) 

thus transform the potentials (5.9) into (5.3), the 
potentials we had derived for the static, homogeneous 
case. 

6. DISCUSSION OF SOLUTIONS 

In the previous sections we have derived expressions 
for the electromagnetic potentials and fields for the 
cases of static homogeneous models and for the 
Friedmann universes in systems of comoving coordi­
nates. These solutions were given in a form which is 
covariant with respect to coordinate transformations 
in 3-space. The potentials and fields derived have the 
property of being sharply propagated on the light 
cone, a consequence of the fact that the geometries 
considered were conformally flat. Our expressions for 
the fields (4.11) and (4.12) reduce to those of Katz6 

when quantities are evaluated in the particular 
coordinate system he used. Also we have shown that 
our potentials are consistent with the potentials 
obtained from flat space, in agreement with Hobbs.5 

An examination of the solution we have obtained 
raises a few points, which we will now consider. First 
it should be noted that the k = 0 case of (2.8), (2.9), 
(4.11), and (4.12) is just flat space-time, and therefore 
the potentials and fields we have derived for this case 
are just the usual Lorentz gauge potentials and fields 
of flat space, written in a form which is covariant with 
respect to spatial transformations. The k = 0 solu­
tions for the Friedmann models (4.13)-(4.16) are, 
of course, related to the flat-space ones by a simple 
coordinate change in the time variable. In the k = 0 
case there is no problem concerning uniqueness of the 
solution, aside from the choice of gauge and causality 
condition chosen, in our case chosen so that we have 
only the retarded solution. 

The k = -1, or open 3-space, models present an 
apparent difficulty in the solution for the potentials 
(2.8) and (2.9), with fU:1ctions given by (4.9). If we let 
the spatial distance 'Y from the source become very 
large, we find that the potentials do not approach zero. 
This arises since F('Y) ~ 1 and H('Y) ~ 1 as 'Y ~ 00. 

This is also reflected in the gauge condition (4.10), 
which is independent of the magnitude of 'Y. However, 
this arises purely from our choice of gauge, which we 
determined by the conditions imposed on the trial 
potentials (2.8) and (2.9). The electromagnetic fields 
(4.11) and (4.12), which are the physically measurable 
quantities, are seen to approach zero for large 'Y, 
since Fp.v f"'oo.) O(exp - 'Y) as 'Y ~ 00. As with the 
k = 0 solution, uniqueness of the solution presents no 
problem. 

The k = + 1, or closed model solutions present the 
most difficulty in interpretation. This arises from the 
fact that in the closed, static models, there is more 
than one geodesic in the 3-space between any two 
points. In the trial solutions (2.8) and (2.9), we stated 
that 7, the potential at x, should depend on the source 
at x' only at the retarded time 7 ' , where 7 ' = 
7 - 'Y(x, X'). 'Y(x, X') was the distance between the 
two points X and x' measured along a geodesic in the 
3-space joining the points. If the two points are not 
opposite each other on the spherical model of radius 
R, then there are two 'V's for these points which are 
less than 27T R and an infinite number of possible 'Y's 
(and therefore an infinite number of retarded times) 
obtained from these two by the addition of 27TnR, 
where n is an integer. In the case of opposite points, 
there are an infinite number of geodesics between the 
two points, but each with the same smallest distance 
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11"R, to which we may again add 211"nR for the distances 
along geodesics which wrap around more than once. 
We have a number of possible choices to make as to 
which 'F's, and therefore which retarded times, one 
allows in the solutions. Simplicity would indicate that 
we accept either all of them, with a contribution to the 
potential from the source at each retarded time, or 
we accept only the shortest distance, as Katz assumed, 
with a single contribution to the potential from the 
source at the single retarded time. 

Accepting all 'F's leads to difficulties immediately in 
discussing the potentials and fields of a single charge. 
This is most easily seen in the case of a stationary 
charge. At some point on the model we then find a 
finite contribution to the field at a particular time due 
to the source at each retarded time, which produces an 
indefinite field when summed over all retarded times. 
Of course, what is inconsistent here is that there must 
be zero net charge in a closed modeI,12 and one must 
include the contribution from some charge with the 
opposite sign as well. Choosing only the shortest 'F 
leads to the vanishing of the effect of the source on the 
potential and field for T - T' > 11". As Katz showed, 
this implies the existence of an equal and opposite 
charge at the opposite point, undergoing a motion 
similar to that of the original charge, and surrounded 
by a field which would be interpreted as an advanced, 
rather than retarded, one. However, by judiciously 
superimposing solutions for pairs of charges in this 
case, one can reproduce solutions which contain only 
the retarded fields for arbitrarily moving pairs of 
charges at any given time, and which, in fact, can 
reproduce the field and potentials obtained by accept­
ing all o/'s as above. However, this is by no means the 
only solution possible. 

The questions posed here may be a result of the 
high degree ofsymmetry in the closed spherical models. 
One can picture the field generated by a source at / 
being propagated outward in all directions and then 
being focused by the geometry to produce a singular 
field at the opposite point at the time T = T' + 11" R. 
The field could then be cut off by assuming an opposite 

12 The potential for an arbitrary static charge distribution is found 
to be Ao = Li qi cot 'f'i(i - 'P';/7T), where 'P'i = o/(x, Xi), L.iqi = 
0, and where there are no image charges. 

charge was present, following Katz, or one could 
assume that the field would continue to propagate 
away from the opposite point, where now no charge 
is assumed to exist. The latter corresponds to accepting 
all 'F's in finding the contributions to the fields. If 
the high degree of symmetry were not present, as 
would realistically be the case since matter is not in 
fact smoothed out, geodesics radiating outward from 
the source would not in general converge to a point 
on the opposite side of the model, and one could not 
assume the existence of a single charge to cut off this 
field. The field must then continue to propagate past 
the opposite side. Moreover, such models would not 
be conformally fiat, and the electromagnetic signals 
would then be smeared by scattering off of the Rie­
mann tensor and not propagated sharply along the 
light cone. Therefore, we conclude that the physically 
acceptable solution for the closed static homogeneous 
model is that for which we admit contributions from 
the source at all retarded times. 

Considering the case of the closed Friedmann 
models raises the same points, except that the discus­
sion about geodesics which wrap around the model 
more than once is irrelevant. This arises from the fact 
that the closed models are also finite in the time from 
initial expansion to final collapse. This time difference, 
expressed in terms of T rather than t, is T = 211"R, 
which shows that a signal can propagate around the 
universe at most once in the age of the universe. The 
only question which arises concerns the field at 
the point on the model opposite the charge at a time 
11"R later than the charge which generates the field. 
However, the arguments used above still apply. Only in 
the highly symmetric case would one expect the rays to 
focus to a point, enabling one to cut off the field by 
assuming the existence of an opposite charge at that 
point. In general one would expect the field to propa­
gate continuously until the universe collapses. There­
fore again we accept contributions from the source at 
all retarded times which are inside the age of the 
universe. 
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Involutional matrices M(a, b, c) with three arbitrary parameters are introduced, based on a matrix 
r~presentation M(R) o~ the linear homogeneous tran~formation R E GL(2). Symmetry properties, 
eIgenvalues, and recursIOn formulas for the representatIOn M(R) are obtained and specialized to the 
involutional matrices M(a, b, c). A set of special involutional matrices A(~), B(~), C(~), and E(~) with 
one arbitrary parameter ~ are introduced as special cases of M(a, b, c). Their relations are discussed. 

1. INTRODUCTION 

The purpose of the present work is to study the 
mathematical properties of involutional matrices 
which are the solutions of the simple quadratic 
equation 

x 2 = const X 1, 

where 1 is the unit matrix. It is somewhat surprising 
that this simple looking problem has a deep root in 
various problems of mathematical physics. Well­
known examples of involutional matrices are the 
Pauli spin matrices. 

To illustrate the nature of the problem further, we 
give two additional examples of involutional matrices 
Aa) and B(~) with one arbitrary parameter ~ which 
the author has introduced in the recent work! on the 
dynamical properties of the Ising lattice. The defini­
tions of these matrices are given by the generating 
equations 

Q 

(1 + ~y)q-'(1 - y)" = 2 A(~)'/ly", (Ll) 
1'=0 

• 
(~ - y)" = 2 B(~)'/ly/l, 11 = 0, 1,2, ... ,q, (1.2) 

/l=0 

where q is an integer. By the repeated use of these 
definitions one can easily show that these (q + 1) x 
(q + 1) matrices in fact satisfy the involutional rela­
tions 

[A(m 2 = (1 + ~)ql, 
[B(~)]2 = 1. 

(1.3) 

(1.4) 

These matrices describe the magnetic susceptibilities 
and the Fisher's algebraic transformation1.2 of spin­
spin correlation of the regular Ising lattice with the 
coordination number q. It has been shown! that the 
matrix element Aa)'/l is closely related to the Jacobi 

• This work was supported in part by the National Aeronautics 
and Space Administration through Sustaining University Program 
Grant GNR 18-002-005 with the University of Louisville. 
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1 Shoon K. Kim, J. Math. Phys. 9, 1705 (1968). 
2 M. E. Fisher, Phys. Rev. 113,969 (1959). 

polynomial with the argument (1 - ~)/(l + ~) 
[see Eqs. (3.12) and (3.21)]. Equation (1.2) which 
defines the matrix B(~) is simply a binomial expansion. 
An interesting special case of the matrix A(~) arises 
in the Fourier expansion of the following trigono­
metric function: 

q 

cosq
-· () sin' () = j-22-q 2 a'l'ei(q-2/l)8, (1.5) 

1'=0 

where a'/l = A (~ = I)'/l' We may note here that 
when 11 > q, the right-hand side of Eq. (1.1) becomes 
an infinite series. Accordingly, the matrix A(~) [and 
also B(~) for 11 < 0] could be considered as a 00 X 00 

matrix. For further properties of these matrices and 
their relations the reader is referred to the previous 
work.! 

Now we shall return to the general discussion on the 
solutions of the simple quadratic equation. The one­
dimensional solution is trivial. The two-dimensional 
solution is simply a traceless matrix I with three 
arbitrary parameters 

I = (a b), 
c -a 

except for trivial constant matrices. If we regard this 
matrix I as an element of the general linear homo­
geneous transformation group in two dimensions, 
the matrix representation of I by means of a basis set 
of qth degree homogeneous polynomials in two 
variables yields a (q + 1) x (q + 1) involutional 
matrix M(/) == M(a, b, c) with three arbitrary param­
eters. Obviously this process of obtaining the 
higher-dimensional involutional matrix from the 
lower-dimensional one must apply to the general 
n-dimensional solution. However, we shall limit the 
problem to the two-dimensional solution except for 
giving only a brief discussion on the characteristic 
relation between the involutional transformation in 
GL(n) and its representation. 

For explicit construction of the representation of 
GL(2) we shall choose the representation which is the 
transpose inverse of the ordinary representation 

1225 
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originally due to Wigner.3.4 The reason is that the 
present choice yields a direct correlation between the 
symmetry properties of the group element and its 
representation. According to this representation the 
matrices Aa) and B(~) are given by M(l, ~, 1) and 
M(O, ~, 1), respectively. Depending upon the ranges 
of the values of ~, we shall find it convenient to 
introduce two additional involutional matrices Ca) 
[= M(I, ~,O)] and E(~) [= M(~, 1, 1)]. The rela­
tions between these will be discussed. 

The representation M(R) of the general homo­
geneous linear transformation R = (~Z) in two 
dimensions GL(2) has four arbitrary parameters 
a, b, e, and d. It is instructive to show that the rep­
resentation M(R) is completely characterized by the 
involutional matrix with a single parameter A (~ = 
-be/ad) multiplied by a simple product of a, e, and d 
[see Eq. (3.13)]. Accordingly the study of one param­
etric involutional matrix carries most of the essential 
characteristics of the four parametric representations 
of R E 6L(2). A simple exemplification of this point 
is the fact that the matrix representation M[/(O)]vll of 
an involution /(0) which is an improper rotation by an 
angle 0 in two dimensions is related to the representa­
tion M[R(O)]vll of pure rotation R(O) E SO(2) by a 
factor (-I)v [see Eq. (3.17)]. 

Guided by the relation between A(~) and M(R) we 
shall extend the previous work on the eigenvalue 
problem and the symmetry properties of A(;) to the 
corresponding problem of M(R) and then specialize 
the results for the involutional matrices M(a, b, c). To 
facilitate the actual construction of these matrices, we 
shall derive the complete sets of the recursion formulas 
for the matrices M(R), A(;), Ba), C(~), and E(;). As 
we have shown in the previous work, I the actual 
matrix form of A(;) is needed in the description of the 
magnetic susceptibility of the Ising model. We shall 
also investigate the integral orthogonal properties of 
Aa) and E($) by means of the corresponding proper­
ties of the Jacobi polynomials. Since so much work 
has been done on GL(n) , the author apologizes in 
advance for not being able to give detailed bibliog­
raphy.3 

2. A REPRESENTATION OF INVOLUTIONAL 
TRANSFORMATION IN GL(n) 

We shall give a brief preparation for the later 
sections. Suppose that we have a set of p functions 

3 For reviews, see M. Hamermesh, Group Theory and its Applica­
tion to Physical Problems (Addison-Wesley Pub!. Co., Inc., Reading, 
Mass., 1962); Quantum Theory of Angular Momentum, L. C. 
Biedenharn and H. Van Dam, Eds. (Academic Press Inc., New York, 
1965). 

• E. P. Wigner, Group Theory (Academic Press Inc., New York, 
1959). 

Fv(r) , y = 1,2,'" ,p, of a vector r = (Xl' X 2 ,'" , 

xn) in a n-dimensional space which serves as a basis 
for a representation of the group of linear homo­
geneous transformations R in the n-dimensional space 
GL(n). The representation M(R) may be defined by 

1) 

Fv(Rr) = I M(R)vIlF/l(r) (2.1) 
/l=l 

for all R in GL(n). According to this definition, the 
representation M(QR) of two successive transforma­
tions Q, R is given by the equation 

1) 

F.(QRr) = IM(QR)v/lFir), (2.2) 
/l=l 

which leads to 
M(QR) = M(Q)M(R). (2.3) 

We note here that the present matrix representation 
M(R) is chosen differently from the conventional 
representation in mathematical physics due to Wigner4 

and others3; the latter is the inverse transpose of 
the present one [see Eq_ (5.13)]. As we shall see later, 
the present choice is particularly convenient in the 
discussion of the symmetry property of M(R) in the 
sense that the symmetry property of R is directly 
reflected to that of M(R). We note also that, as far as 
the definition (2.1) and the group property (2.3) are 
concerned, singular transformations are not excluded, 
since inverse transformation does not appear in the 
definition in contrast with the conventional rep­
resentation.3.4 

For our present purpose we take a complete set of 
linearly independent qth degree homogeneous poly­
nomials in n variables (Xl"'" Xn) as the basis 
set {Fv(r)}. Then the dimension of the representation 
of GL(n) is given by 

p = (q + : - 1) (2.4) 

and the representation M(R) is irreducible. By 
definition, the basis function Fv(r) satisfies the Euler 
condition, 

FvC?r) = ?qFvCr), Y = I, 2, ... ,p'. (2.5) 

Accordingly, the representation satisfies 

M(?R) = ?qM(R), R E GL(n). (2.6) 

Obviously, the representation is one-to-q, since, for 
? = exp (27Tik/q), k = 1,2, ... ,q, the right-hand 
side of Eq. (2.6) equals M(R). In the group theory,S 
M(R) is said to be an invariant matrix of the matrix R. 

5 D. E. Littlewood, The Theory of Group Characters and Matrix 
Representations of Groups (Clarendon Press, Oxford, England, 1950), 
2nd ed. 
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Now if we take R = 1 where 1 is the identical terms of the hypergeometric functions,6 

transformation, we obtain 

(2.7) 

Therefore, if I is an involutional transformation in 
GL(n) , 

12 = AI, (2.8) 

then its p-dimensional representation M(I) is also 
involutional and satisfies 

(2.9) 

Since the representation is irreducible, M(I) is involu­
tional only when I is involutional. This equation (2.9) 
is the basic equation for the present work. In the 
following section we shall introduce the basis function 
explicitly and study the properties of the representa­
tion M(l) of the involutional transformationIin GL(2). 

3. REPRESENTATION OF AN INVOLUTIONAL 
TRANSFORMATION IN GL(2) 

We take the following form for the complete set of 
qth-degree homogeneous polynomials in two variables 
x andy, 

Fv(r) = xq
-

v/, 'V = 0, 1,2, ... , q. (3.1) 

The linear homogeneous transformation R in two 
dimensions is given by a 2 x 2 matrix 

R = (; !) E GL(2), (3.2) 

where a, b, e, and d are arbitrary parameters. Then, 
from Eq. (2.1) we obtain the (q + I)-dimensional 
representation M(R) by 

q 

Fv(Rr) = (ax + by)q-V(ex + dy)V = IM(R)vILFir). 
IL=O 

(3.3) 

Obviously, M(R) reduces to R when q = 1. For later 
convenience we write down the explicit form of M(R) , 

where the limits of summation over k is given by the 
conditions that the binomial coefficients do not 
vanish or blow up. In the discussion of the integral 
properties and symmetry properties of the matrix 
M(R), it is useful to express the matrix elements in 

M(R)vIL = aq-V-ILbILeVe : 'V) 

X 2Fl( -'V, -f-l; q - 'V - f-l + 1, ~~) 

= aa-vev-ILdILC) 

X 2Fl('V - q, -f-l; 'V - f-l + 1, :~), (3.5) 

where q - 'V - f-l 2 0 for the first expression and 
'V 2 f-l for the second. These expressions are valid 
even when q and'll are not integers provided that the 
lad/bel < 1 for the first and I be/ad I < 1 for the 
second expression. However, we shall not make this 
generalization. 

Now if we exclude constant matrices, the most 
general involutional transformation in two dimen­
sions is given by 

l(a b e) = (a b) [lea, b, e)]2 = (a2 + be)l, 
" e -a' 

(3.6) 

where a, b, and e are arbitrary parameters. This is 
obtained by the nontrivial solution of the quadratic 
equation (trivial solutions mean constant matrices): 

R2 = (a
2 + be (a + d)b) _ 

(a + d)e d2 + be - const X 1. 

We may state that nontrivial 2 X 2 involutional 
matrices are traceless. We shall see later, however, 
that the matrix representations of lea, b, e) are not 
always traceless, depending upon the dimension of 
the representation. From Eqs. (2.8) and (2.9) we have 
for the (q + I)-dimensional representation M(a, b, e) 
of I(a, b, e): 

M(a, b, e) == M[ (; ~a) l (3.7) 

[M(a, b, e)]2 = (a2 + be)Ql. 

The explicit form of this matrix representation is 
obtained simply by putting d = -a in Eqs. (3.4) 
and (3.5). 

It is now a simple matter to understand why the 
matrices A(~) and B(~) which we have introduced in 
the introduction are involutional. In fact, comparing 

• National Bureau of Standards, Applied Mathematical Series, 
Vol. 55: Handbook of Mathematical Functions, M. Abramowitz and 
I. A. Stegun, Eds. (National Bureau of Standards, Washington, 
D.C., 1964), p. 556. 
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Eqs. (1.1) and (1.2) with Eq. (3.3) we obtain 

A(~) = M[C !1)]. B(g) = M[G -~)J 
(3.8) 

which are certainly the representations of traceless 
matrices. Depending upon the ranges of values which 
the parameter ~ takes, we may find it more convenient 
in application to introduce the following matrices: 

C(~) = M[ (~ !J l E(~) = M[ (; ~~)l 
which satisfy 

(3.9) 

[C(g)]2 = I, [E(~»)2 = (I + ~2)ql. 
We have saved the symbol D for the conventional 
representation due to Wigner.3 •4 The generating 
equations of these matrices are 

q 

(1 + ~y)q-v( - yr = ~ C(~)Y/li', (3.10) 
/l=V 

q 

(~ + y)Q-v(1 - ~Yr = ~E(~)v,f. (3.11) 
/l=0 

Comparing the generating equations (1.1), (1.2), 
(3.10), and (3.11), we obtain the following relations: 

(3.12) 

E(~)V/l = ~q+/l-v A(~2)v/l' 
It is also possible to express the representation M(R) 
of the general linear transformation R E GL(2) in 
terms of A(~): 

M[(a b)] = aQ-VeV-/l(_d)/lA(_ be) . (3.13) 
e d V/l ad V/l 

The general nature and the usefulness of the involu­
tional matrix A(g) lie in this formula. Further impor­
tant properties of the matrices A(~) and B(~) are given 
in the previous work.! 

In order to have a further understanding of the 
involutional transformation, we put a2 + be = 1 in 
Eq. (3.6) and obtain an involution defined by 

(
0 - be)! b ) 

feb, e) = e -(1 _ be)!' (3.14) 

which satisfies [I(be)]2 = 1 for arbitrary values of 
band e. Since det I(b, e) = -1, nontrivial involutions 
do not belong to SL(2). By means of a similarity 
transformation with the matrix T defined by 

T= (~ (b~e)!)' 
we can reduce I(be) into a symmetric orthogonal 
matrix which is stilI an involution 

(
COS f) sin f) ) 

I(f) = TI(b, e)T-1 = . f) f)' (3.15) 
SIll -cos 

where we have set (be)t = sin fJ. Obviously, for a real 
value of fJ, the involution l(fJ) describes an improper 
rotation, a rotation R(fJ) of the coordinate system 
(x, y) by an angle fJ followed by the reflection ax in 
the x axis 

f(f) = axR(fJ), (3.16) 

where 

ax = (~ 0) ( cos fJ 
, R(fJ) = . fJ 

-1 -sm 
sin fJ). 
cos fJ 

If we give the matrix representation of Eq. (3.16), we 
obtain 

M[I(fJ)Jvl' = (-lrM[R(fJ)]vl" (3.17) 

which connects the representation of an involution 
with the representation of the pure rotation. A trivial 
but useful conclusion is that the right-hand side is 
also an involution. 

We can easily generalize Eq. (3.15) for the case of 
I(a, b, e) when a2 + be ¥: 1 to obtain 

I(fJ) = T I(a, b, e) T-\ (3.18) 
(a 2 + be)! 

where T is the same as before and tan2 e = be/a2
• 

Giving the representation of this equation we obtain 

1 1 > 
M[I(e)lv/l = (a 2 + ber~q(b/e}~(v-I' M(a, b, e)V/l' 

(3.19) 

Using Eq. (3.13) and the second equation ofEq. (3.12) 
we can express the right-hand side of this equation in 
terms of A(~) and E(~) as 

M[I(e)]v/l = cosq-v+/le sinV-/l eA(tan2 e)yl' 

= sinq eE( cot e)vl" (3.20) 

Equations (3.18)-(3.20) connect the properties of 
involutional matrices with the well-known properties 
of the representation of the two-dimensional pure 
rotation group. For example, we can expect the 
integral orthogonal properties of the polynomials of 
;, A(~)Y/l' and E(;)v/l from the orthogonality theorem 
of M(R(e»v/l which we shall discuss in the following. 

Using the first of Eqs. (3.5) we can express Ea)v/l 
in terms of the hypergeometric function and compare 
with the definition of the Jacobi polynomiaF expressed 
in terms of the hypergeometric function to obtain 

E~~(fJ) = fJa(l + fJ2)nP<:'P>«(l - fJ2)/(l + fJ2», (3.21) 

where we have denoted q dependence of E(fJ) explicitly 
and 

IX = q - Y - fl > -1, fJ = Y - fl > -1, n = fl· 

7 See Ref. 6, p. 773. 
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The Jacobi polynomials satisfy the orthogonal 
theorem,? 

J~a;!) = fp -x)a(l - x)p p;~,P)(x)P~,P)(x) dx 

= onm 2
y

+I (Y + 2n)/(y + 2n), 
Y + 2n + 1 n P + n 

(3.22) 
where onm is the Kronecker delta and 

Y = IX + p. 
Substituting Eq. (3.21) into Eq. (3.22) and using the 
second equation of Eq. (3.12) and Eq. (3.20) we 
obtain 

ia,P) = 2Y+21 00 'f} E(Y+2n )( )E(Y+2m)( ) d 
nm 0 (1 + 'f}2y+n+m+2 p+n,n 'f} p+m,m 'fJ 'fJ 

_ 2y+I [OC! ;P A (Y+2n)(~)A (Y+2m)( t) d t - Jo (1 + ~y+n+m+2 p+n,n p+m,m <; " 

= 2Y i g 

M~r:-n~~(t()M~~~:':!.(t() sin () d(), (3.23) 

where the matrix M(t() equals either M[l(t()] or 
M[R(t())]. We can simplify these equations further if 
we introduce the "symmetrized representation" S(t() 
by a similarity transformation of Met(): 

1 J 

S~~(t() = (~r M;.~)(t()(;r2. (3.24) 

The properties of this representation will be discussed 
extensively in connection with the symmetry properties 
of the representation M(R). Substituting Eq. (3.24) 
into the last expression of Eq. (3.23) we obtain 

I "S(Y+2nJ(J.()S-(Y+2m)(J.() . () d() 
p+n,n 2 p+m,m 2 sIn 

o 
= 2b"rn/(Y + 2n + 1). (3.25) 

As may become clearer later when we establish the 
relation (Eq. 5.17) between S(u) and the Wigner's 
1)j(u) function 4 where u is a unitary matrix, Eq. (3.25) 
is nothing but the basic orthogonal theorem in the 
double-valued representation of the three-dimensional 
rotation group. 

4. EIGENV ALVES OF M(R) AND M(I) 

First we shall calculate the eigenvalues of the 
matrix representation M(R) of the general linear 
transformation R in GL(2) defined by Eq. (3.2), then 
specialize the results for the representation of in­
volutional transformation defined by Eq. (3.6). The 
calculation is based on the following simple theorem. 

Theorem 1: If R is a triangular matrix, then its 
matrix representation M(R) is also triangular in 
shape similar to R. 

'Fhe proof is trivial. Suppose one of the matrix 
elements b of R be zero so that R becomes a tri-

angular matrix Rt defined by 

Rt = (; ~). (4.1) 

Then from Eq. (3.3) we obtain 
v 

aQ-V(c + dyt = LMvl'yI'. (4.2) 
1'=0 

Accordingly, MV/L = 0 for fl > Y. In the analogous 
manner, whenever one of the matrix elements of R 
becomes zero, the nonzero matrix elements of its 
representation M(R) form a triangle in shape equiv­
alent to R. 

According to the well-known theorem, it is always 
possible to transform any arbitrary square matrix 
into a triangular matrix by a suitable unitary trans­
formation. Let U be such a unitary matrix which 
transforms R into a triangular matrix Rt , 

-1 _ (€1 0)_ 
U RU- , €2 =Rt , (4.3) 

where, is a constant and €1 and €2 are the eigenvalues 
of R. According to Theorem 1 the representation 
M(Rt) is also triangular and thus its diagonal elements 
are the eigenvalues of M(R). Substituting R t in Eq. 
(3.3) we obtain the representation M(Rt), 

M(Rt)v/L = C)C-/L€i-V€~, ,¥: 0, 
( 4.4) 

= OVI'€(rv€~, , = 0, 

where 0V/L is Kronecker's delta. Therefore, the eigen­
values of M(R) are given by 

€i-V€L Y = 0, 1,2,' .. , q. (4.5) 

The determinant of the matrix M(R) is given by 

det M(R) = IT €i-v€~ = (€1€2)h(H1) = ~h(q+I), 
v=o 

(4.6) 
where ~ = ad - be the determinant of the matrix R. 
The trace of M(R) is give~ by 

q 

Tr M(R) = L€i-v€~ 
v=o 

(4.7) 

We shall apply these general results to the repre­
sentation of the involutional transformation lea, b, e) 
defined by Eq. (3.6). From the definition, the eigen­
values of lea, b, e) are ±€, where 

€ = (a2 + be)!, (4.8) 

and the determinant is given by 

det lea, b, e) = _€2. (4.9) 

Accordingly, from Eq. (4.5) its representation 
M(a, b, e) has only two eigenvalues ±€q and its 
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determinant and trace are 

det M(a, b, c) = (_E2)!q(Q-t!l, 

Tr M(a, b, c) = E
q

, q = even, (4.10) 

= 0, q = odd. 

Therefore, when q is even, the degeneracy of the 
eigenvalue Eq is larger by one than that of -Eq

• We 
may note here that the trace of a nontrivial 2 X 2 
involutional matrix is always zero but the trace of its 
representation is not necessarily zero. We also note 
that all these properties of M(a, b, c) are described by 
a single parameter E. This is not surprising because of 
the following discussion. 

If we restrict ourselves to the eigenvalue problem of 
involutional matrices from the beginning we can 
handle the problem more generally. Let M(l) be the 
p-dimensional representation of an involutional 
transformation I in n dimensions defined by Eq. (2.8). 
Then rewriting Eq. (2.9) we obtain 

M(I)X± = ±J.~qx±, X± = M(/) ± AJql, (4.11) 

where + (-) sign should be taken for X+(X_). 
Therefore, the eigenvalues of M(l) are ±J.!q and the 
corresponding eigenvectors are given by the column 
vectors of X ± . At least half of these eigenvectors are 
redundant. We can also write down the square of the 
determinant M(l), 

[det M(l)]2 = },,QP, (4.12) 

where p is given by Eq. (2.4) and, 10 particular, 
p = q + I for IE GL(2). 

5. SYMMETRY PROPERTIES OF M(R), S(R), 
AND M(I) 

To obtain the symmetry properties of M(I) we 
first study the symmetry properties of the representa­
tion M(R) for the general linear transformation R in 
two dimensions, many of which may have been known. 
The most obvious symmetry property of M(R) arises 
from the fact that Fir) = xq-VyV is (q - v)th degree 
in x and vth degree iny. With this in mind, inspection 
of the generating equation (3.3) for M(R) yields 

Hereafter we refer to these as the Euler relations for 
A!(R). More frequently than not, we use these equa­
tIOns for J. = -I, in which case combination of the 
above equalities yields two additional properties, 

M[(a b)] = (-1)V+I'M[( a -b)] 
c d VI' -c d I'V 

= (-l)Hv+I'M[ (~a ~d) 11" 
(5.2) 

Further symmetries of the matrix M(R) arises from 
the fact that the basis function Fv(r) = xq-VyV is 
invariant with respect to the simultaneous inter­
~hanges q - v +t v and x +t y. Applying this property 
mto the generating equation (3.3) of M(R) we obtain 

M[ e ~) 11' = M[ (: :) 1-v.1' 
= M[ C :) l,q-1' = M[ (: :) J-V,q-I" (5.3) 

Thes~ equations mean the following. We regard the 
matnces M(R) and R as rectangulars (not squares) 
whose edges are parallel to the rows and columns of 
the. matrices. The set of symmetry operations P2 
WhICh leaves the rectangular invariant forms the 
dihedral group D2 which consists of three 2-fold axes 
of rotation. Then the above equations (5.3) are written 
formally as 

M(P2R) = P2M(R), P 2 ED2 • (5.4) 

More important symmetry properties of M(R) arise 
from the symmetry of the following bilinear form in 
x andy: 

= [ad + bc(x + y + xyW, (5.5) 

where we have used Eq. (3.3). Obviously the right­
hand side of the equation is symmetric with respect to 
(x,y) or (b, c) or (a, d). Therefore, we obtain the 
following theorem: 

. !heor~m 2: T~e expression (~)dq-V-l'bVcI'M[(~ !)lvl' 
IS mvanant for mterchanges of two variables (v, It) 
or (b, c) or (a, d). 

By means of this theorem, if we perform the simul­
taneous interchanges (v +t It) and (b +t c) for the 
expression defined in the theorem, we obtain 

(!)M(R)vl' = (!)M(R)l'v, (5.6) 
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where R is the transpose of R. Accordingly, if we 
introduce a matrix defined by 

(q)* (q)-* S(R)vll = v M(R)vll f' ' (5.7) 

it satisfies 
S(R) = S(R). (5.8) 

Since S(R) and M(R) are related by a similarity 
transformation, S(R) is also a representation of 
R E GL(2). In fact, S(R) is generated by the normalized 
basis function iv(r) = xq-y/[(q - v)! v!}t which is 
well known in the representatIOn theory of the 
unitary groups in two dimensions3•4 

Iv(Rr) = I S(R)vlll,ir). (5.9) 
Il 

We call this representation the symmetrized rep­
resentation. Obviously, S(R) satisfies all the sym­
metry properties of M(R) given by Eqs. (5.1), (5.2), 
and (5.3). If we combine Eqs. (5.4) and (5.8) we may 
write the symmetry properties of S(R) formally as 
follows, 

S(P4R) = P4S(R), P 4 E D4 , (5.10) 

where P 4 is a symmetry operation which leaves a 
square invariant, regarding the matrices S(R) and R 
as squares. The set of symmetry operations forms the 
dihedral group D4 • We can write Eq. (5.10) explicitly 
as follows: 

Before we give further discussions on the symmetry 
properties of M(R) and S(R), we discuss a couple of 
elementary but important applications of these 
symmetry properties. If we combine Eq. (5.8) with the 
property that S(R)* = S(R*), where asterisk denotes 
the complex conjugate, we can conclude that, if the 
matrix R is symmetric or Hermitian or orthogonal or 
unitary, then so is S(R) in each case. This is well 
known but the present proof is direct and simpler than 
the proof given by Wigner4 for the case when R is 
unitary. 

The conventional representation due to Wigner4 is 
defined by 

q 

Iv(R-1r) = Ilir)D(R)/lv' (5.12) 
Il=O 

Accordingly, D(R) is given by S(R) as follows: 

D(R) = S(R-I). (5.13) 

Since the inverse of R is given by 

R-I = .!.( d 
~ -e 

-a
b

) , /). = det R = ad - be, 

(5.14) 
we obtain 

S(R-I)vll = ~-qs[ (~e ~b) III 
= (-lY+Il/).-qS(R)q_/l,q_V' (5.15) 

where we have used Euler's relations (5.1) and (5.2) 
and the last equality of Eq. (5.11). Accordingly, from 
Eqs. (5.13), and (5.15) we have 

D(R)vll = (-I)v+/l/).-qS(R)q_v,q_/l' (5.16) 

It is obvious that, when /). = 1, the representations 
D(R) and S(R) are equivalent. The Wigner function 
:J)i(U)m'm with) = tq in the double-valued representa­
tion of three-dimensional rotation4 is given by 

:J)i(U)m',m = (-l)m'+mD(U)j_m'.i_m 

= S(U)i+m'.i+m, (5.17) 

where U is a unitary matrix belonging to SU(2). Note 
that the suffixes of S(U) are always integers so that 
half-integral suffix could be preferably avoided by 
using the representation S(U). 

We shall now return to further discussions on the 
symmetry properties of M(R). Somewhat less elegant 
but useful symmetry properties of M(R) are obtained 
by using Euler's relations and Theorem 2 concern­
ing the interchange (b +t c) or (a +t d). The results are 

(5.18) 
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It is obvious that the symmetrized representation 
S(R) satisfies all these equations besides Eq. (5.11). 

We shall now specialize these symmetry relations 
for the case of the involutional matrices M(a, b, c) 
and Sea, b, c), where M(a, b, c) is given by Eq. (3.7) 
and Sea, b, c) is defined by 

Sea, b, c) = s[ (: ~J J. (5.19) 

Because of the restriction d = -a, the number of 
symmetry relations for these reduces. We write down 
the results as follows: 

M(a, b, C)VIl = A-qM(Aa, Ab, AC)vll 

= (-l)'+IlM(a, -b, -C)VIl 

= (_l)Hv+IlM( -a, b, C)VIl 

= (c/b)V-IlM(a, c, b)vll 

= (-l)q-V-Il(c/bY-IlM(a, b, c)q-V,q-Il 

= (ab)q( -c/b),M(a-1, b-I, c-1)V,q_1l 

= (ac?( -b/c)llM(a-1, b-l, c-1)q_V,Il' 
(5.20) 

Besides these the matrix Sea, b, c) satisfies 

sea, b, C)VIl = Sea, c, b)llv' (5.21) 

Since the symmetry properties of Ae;) have been 
given in the previous work l we shall only give the 
symmetry properties of E(~) :::= M(~, 1, 1), 

E(~)vll = (-l)q+v+IlE(-~)vll 

= (-l)q+v+IlE(~)q_v,q_1l 

= (-lr~qE(;I)v,q_1l 

= (-w~qE(~-I)q_V'Il' (5.22) 

and the corresponding symmetrized representation 
Be;) :::= S( ~, 1, 1) satisfies 

B( ~)VIl = B( ~)I'V' (5.23) 

Finally, for the representation S(O) = S[/(O)] of the 
two-dimensional involution I(O) defined by Eq. (3.15) 
we have 

and 

S(O)VIl = S(e)llv = (-l)Hv+IlS(O)q_V,q_1l 

= (-I)'+IlS( -O)VIl (5.24) 

S(t7T - eLIl = (-l)vS«()v,q_Il' 

S(t7T + (})V/l = ( -l)q-/lS«(})v,q_/l' 

S( 7T - O)V/l = ( _l)q+v+/l S( O)VI' ' 

S( 7T + O)VI' = (-lFS(O)v/l' 

(5.25) 

As is well known, analogous equations hold for the 
representation S[R(O)] of the proper rotation R(O) in 
two dimensions. This is seen most easily from the 

relation 

S(O)V/l = (-I),S[R(O)]vl" 

because of Eq. (3.17). 

(5.26) 

6. RECURSION FORMULAS OF M(R) AND 
INVOLUTIONAL MATRICES 

In the derivation of the recursion formulas it is 
necessary to denote the degree of the basis poly­
nomials of the representation explicitly, thus 

p~q)(r) = xq-VyV, v = 0, 1,2, ... ,q. 

By definition we have 

p(q)(r) = p(q')(r)p(q-q')(r) q < q v < v (6.1) 
V VI V-VI ' 1 _ , 1 _ . 

Introducing a linear transformation R E GL(2) in 
this equation and expanding it by means of Eq.(3.3), 
we obtain 

In the special cases where ql = 1 or ql = q - 1, this 
equation becomes 

M(q) = aM(q-l) + bM(q-l) 
VI1 VJl v,p.-l 

= cM(q-U + dM(q-l) (6.3) 
v-I,ll v-l,,,,-l, 

where we have omitted the argument R for simplicity. 
Eq uations (6.3) are particularly useful in obtaining 
the explicit form of the matrix M(R). Actually these 
are generalizations of the well-known pyramidal rule 
for the binomial coefficients 

In fact, Eqs. (6.3) reduce to this if we set R = (~ D. 
Analogous recursion formulas are obtained if we 
differentiate both sides of the generating equation (3.3) 
of M(R) with respect to x or y, 

(q - II.)M(q) = a(q - v)M(q-O + CVM(q-l) 
, VJl, v,/l 1'-1,,11 , 

II.M(q) = b(q - v)M(q-O + dvM(q-O 
r'" V/l V,/l-l v-l,/l-l' 

(6.4) 

The recursion formulas involving the differential 
coefficients of M(R) are obtained by differentiating 
the generating equation with respect to a or b or c or d. 
The results are 

o - M(q) = (q - V)M(q-l) aa v,,,," V,1l ' 

~ M(q) = (q - V)M(q-l) 
ob V,/l V,/l-l, 

~ M(q) = vM(q-U 
oc V/l V-I,/l' 

(6.5) 

~ M(q) - M(q-U 
ad V/l - V v-I,/l-l . 
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Repeated uses of these yield the differential equation 
for M(R): 

- -- M(R) =0. ( 
02 02 ) 

oaiJd iJbiJc 
(6.6) 

These equations (6.3)-(6.5) form the fundamental set 
of the recursion formulas. 
We can obtain an auxiliary set of recursion formulas 

which exhibit the various homogeneous dependence 
of M(R) on the matrix elements a, b, c, and d by 
applying Euler's theorem on Eq. (5.1): 

(
a ~ + b ~) M(a) = (q - y)M(a) 

iJa iJb Vil Vil ' 

(6.7) 

and 

(
a ~ + b ~ + c i + d ~)M(a)(R) = qM(a)(R). 

iJa iJb iJc iJd 
(6.8) 

These formulas can be easily obtained by combining 
the fundamental set (6.3)-(6.5). 

Now we shall specialize these formulas for the 
involutional matrices. The recursion formulas for the 
general involutional matrices M(a, b, c) are not much 
simpler than those of M(R) except that the first and 
the fourth of Eqs. (6.5) have to be combined. We shall 
give the results only for the matrices A(';), B(';), C(';), 
and E(';) which have more practical applications: 

A (a) = A (a-O + I: A (a-I) 
vIJ l'IJ ~ v,,u-l 

- A(a-I) _ A(a-O 
- v-l • .u v-l,,u-l' 

(q _ u)A (a) = (q _ y)A (a-I) + vA (a-I) 
r "Il lIll v-l,1J ' 

uA(a) = (q _ y)I:A(a-I ) _ VA(a-I) 
r vil "V,Il-I v-I,ll-I, 

(6.9) 

Using the first two recursion formulas one can show 
that the partial product defined by 

8 

0(a,8) = '" A(a)A(a) 0 _< S _< q, 
V,p k va up' (6.10) 

0'=0 

satisfies the recursion formula 
0(0,8) = (1 + 1:)0(0-1,8-1) + A(q) A(o). (6.11) 

liP. ~ \/-1,1'-1 v-l,s S,p. 

(2) B(';)vll = M[ G _~) 111 = (;)e- Il(-l)11: 

BVIL = ';BV- 1,1l - BV-1,1l-1, 

(v - ft)Bvll = ';yBv- 1,1l' 

d 
d'; BVIL = vBV- 1,1l' 

(6.12) 

From the first recursion formula one can show that, 
for l' ~ S ~ ft, 

!BvI1BI1Il = (-1)'(1' - ft - l)Bvll' (6.13) 
11=0 s - ft , 

which has an important application in the transforma~ 
tion of spin-:spin correlation functions of the Ising 
modeU 

(6.14) 

E(q) = I:E(o-l) + E(q-l) 
l'# ~ lip, V,JI-l 

= E(a-1) _ I:E(a-1) 
v-I,ll "v-1,1l-1 , 

(q - u)E(a) = (q _ v)I:E(O-1) + yE(q-l) 
, lIll ~ lip, v-I,p-l , 

ftE~:) = (q - Y)E~~~~ - ';YE~~l~~_l' (6.15) 

.!!. E(o) = (q _ y)E(o-l) _ vE(q-O 
d'; Vil V,1l v-1,1l-1 . 

(5) Finally we shall give the recursion formula for 
the representation S(q)(R) which is defined by Eq. 
(5.7). The fundamental set of the recursion formulas 
of M(R), Eqs. (6.3)-(6.5), gives the following for S(R): 

(q - y)iS(q) = a(q - u)is(a-1 + bui S(q-l) 
VII r l'1l r v,,u-l , 

viS(q) = c(q - u)is (q-1) + dui s(a-1) 
Vil r v-I,ll r v-1,1l-1 , 

(q - u)iS(q) = a(q _ y)is(a-O + cviS(Q-l) (6.16) 
r VIl V,1l v-l,,u , 

uis(a) = b(q - v)iS(q-o + dvi S(q-l) r VIl v,,u-l v-l,#-1 , 

:a S~~ = [(q - y)(q - ft)]!S~:-l), 

.E. S(a) = [(q _ y)u]iS(q-l) 
iJb Vil r V,Il-1 , 

.E. S(a) = [y(q _ u)]iS(q-l) 
oc Vil r v-I,ll ' 

( 6.17) 

iJ S(q) ()*S(q-O 
iJd Vil = yft V-l,Il-1 . 



                                                                                                                                    

1234 SRoaN KYUNG KIM 

Recursion formulas for this representation are rather 
cumbersome if not complicated. One could avoid this 
representation using M(R) together with the symmetry 
property (5.6). If we use Eq. (5.17) we could write 
down all the recursion formulas for the Wigner func­
tion 'J)j(U) as well.4 
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representations of the Poincare group are re-expressed within the framework of generalized covariance 
provided by the hyperplane formalism and are seen to be related to the conventional helicity states by a 
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I. INTRODUCTION 

Since the introduction of the helicity formalism by 
Jacob and Wick l in 1959, helicity states and amplitudes 
have become widely utilized in elementary particle 
physics. The helicity formalism has most fruitfully 
been applied in the theoretical development of and 
calculations involving dispersion relations, 2 resonance 
decay,3 the absorption model,4 and the Regge pole 
model. 5 Despite the elegance of the Jacob and Wick 
theory, 1 however, helicity amplitudes, although 
covariant in a true physical sense, are not "mani­
festly" so. This is, of course, related to the problems 
of kinematic singularities discussed by various 
authors. 6 

Fleming? has given a technique based on his 
"hyperplane" formalism for explicitly displaying the 
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covariance of systems which are not manifestly 
covariant in the usual sense. One of the merits of 
Fleming's hyperplane formalism, as interpreted by 
Hammer, McDonald, and Pursey (HMP),B is that it 
provides a convenient, covariant way of describing 
various observers simultaneously with the observed 
physical system. Fleming? has shown that operators 
which are not usually considered to be covariant may 
be generalized to forms which; by relating to operators 
used by an arbitrary observer, are indeed manifestly 
covariant. This sense of manifest covariance is 
described in detail by HMP.B 

The purpose of this paper is to construct helicity 
states within the framework of the hyperplane 
formalism. While the results are not expected to 
resolve any currently outstanding problems in the use 
of the helicity formalism, it is believed that further 
developments along these lines will lead to a con­
siderably deeper insight into the relationship between 
the observed system and the observer. 

The hyperplane formalism is, most simply, a 
restatement of the equivalence of the various inertial 

• C. L. Hammer, S. C. McDonald, and D. L. Pursey, Phys. Rev. 
171, 1349 (1968). 
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observers. In the Minkowski space, with signature 
(+ - - -), spanned by a given orthogonal tetrad 

{ eP : fl == 0, 1, 2, 3} 
== {(I, 0, 0, 0), (0,1,0,0), (0, 0,1,0), (0, 0, 0, I)}, 

(1) 

an arbitrary spacelike hyperplane is defined by a unit 
normal rt, with 'YJp'YJP == 1. The spacelike frame of 
every inertial observer may then be said to span a 
particular hyperplane. Fleming7 has called the partic­
ular. hyperplane with ijP == (1,0) the "instantaneous" 
hyperplane and this hyperplane is spanned by the 
triad {e i : i == 1,2, 3}. The observer with this particular 
triad for a reference frame is called by HMps the 
"superobserver." Observers associated with all other 
hyperplanes are accordingly called hyperplane obser­
vers. 

Fleming7 has constructed operators which generate 
infinitesimal transformations of the Poincare group 
but which are not, in the usual sense, canonical. 
HMps have shown how Fleming's operators may be 
constructed from the superobserver's canonical Poin­
care generators by performing on them a Lorentz 
transformation which takes ij into the specified 
hyperplane normal 'YJ. In this paper, these operators 
will be shown to form what will be defined as a 
"supercanonical" set of infinitesimal Poincare genera­
tors. It will be seen that this set of operators are those 
used by the superobserver to generate the Poincare 
group as seen by a hyperplane observer. In Sec. III, 
the transformation parameters used by the super­
observer are found explicitly in terms of the corre­
sponding parameters used by the hyperplane observer. 
In Sec. IV, the helicity representation basis states for 
the m > ° irreducible representations of the Poincare 
group as seen by a hyperplane observer are con­
structed. In Sec. V, these hyperplane helicity states are 
related to the usual helicity states. 

The HMps interpretation of Fleming's operators7 

will be used, with the understanding that, unless 
otherwise specified, all transformations are to be taken 
in the "active" sense. That is, once the hyperplane 
observer's reference frame is defined, all Lorentz 
transformations will transform vectors and not 
reference frames. Also, as with Fleming,7 the hyper­
plane normal 'YJ will always be a c-number so as to be 
identified with a macroscopic observer. As usual, 
units will be chosen such that c == Ii == 1. 

II. THE SUPERCANONICAL GENERATORS 

The proper orthochronous Poincare group is that 
group of transformations, with typical element (I, a), 
which carry the point with space-time coordinates xl' 

into a point with coordinates X'I' given by 

X'I' == l~xv + aI', (2) 

where 

I~/: == I:/~ == t5~, det III == + 1 and 19 > 0. (3) 

Under the subgroup of homogeneous transformations 
of the form (I, 0), the quantity xpxp is left invariant. 
Here, the indices fl, 'P,' •• label vector components 
with respect to the tetrad {eP : fl == 0, 1, 2, 3} of 
Eq. (1). 

The infinitesimal generators of:r are pI' and MPv, 
and satisfy the commutation rules 

[pI', r] == 0, 

[pI', MP"] == i(gpPP" _ gp"PP), 

[Mpv, MP"] 
(4) 

== i(gp"MVP + gVPMpl1 _ gpPMVI1 _ gV"MpP). 

No confusion will arise if the same symbols pI' and 
Mpv are used to denote both elements of the abstract 
Lie algebra of:r and the Hermitian operators which 
represent these generators in the state space of the 
quantum mechanical system under consideration. 
Corresponding to each IE:r, there is an operator L 
acting on the state space such that 

L-1 MPv L == 1~I;MM. 
(5) 

In particular, the operator L is taken to be unitary 
and written as 

L(w) == exp tiwpvMPv, (6) 

where wpv == -wvp so that, at most, only six of the 
components of ware independent. 

One may further define the operators 

Ji == lEiikMik N i == MOi i J' == 1 2 3 
"2, '" , , 

WI' == tE
pVO" P vM 011 , with E

1230 == E
123 == + 1. 

(7) 

These operators satisfy the canonical commutation 
rules 

[pI', r] == [pI', WV] == 0, [pO, Ji] == 0, 

[pO, Ni] == ipi, [pi, Ni] == j{)iipO, 

[Ji, Ji] == - [Ni, N i ] == iEiikJk, (8) 

[pi, Ji] == iEiikpk, [Ji, N i ] == iEiikNk. 

The pI' generate four-translations, the Ji generate 
rotations, and the N i generate "pure" Lorentz 
transformations, which are homogeneous transforma­
tions in the iO-planes. Moreover, the operators PjlPP 
and WI' WI' are group invariants in that they commute 
with all of the group operations. 
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Since a homogeneous Lorentz transformation is, in 
general, specified by six parameters, three may be 
taken to be the parameters IL, say, of a pure Lorentz 
transformation 10 , and the remaining three the Euler 
angles IX, (J, y for a rotation r. Thus, any such trans­
formation lew) may be written as 

lew) = r(lX{Jy)lo(U), (9) 

where the W IlV may be found in terms of IX, (J, y, and IL. 
The corresponding operator is given by 

L[l( w)] = R[r(lX{Jy)]Lo[lo( u)] 
. J3 .pJ2 . J3 . lNl . 2N2 . 3N 3 = e,a e' e'Y etu e'u e'u . (10) 

Alternatively, the same transformation may be 
written as a Lorentz transformation 1('Y]) which takes 
the vector if = (1,0) into the vector 'Y] = «1 + "l)2)!, "I), 

followed by a transformation r( 'Y]; w') which leaves 'Y] 
fixed, 

lew) = r('Y]; w')I('Y]), (11) 

where 'Y]1l = 1~('Y])1r and r~('Y]; w')'Y]v = 'Y]1l. Following 
Fleming,7 the vector 'Y] will henceforth be thought of 
as the unit normal to a hyperplane, the particular 
hyperplane with normal if being called the "instan­
taneous" hyperplane. Each hyperplane will be 
associated with an observer who has velocity v, say, 
relative to the superobserver. The transformation IC 'Y]) 
of Eq. (11) is then given by 

ljC'f}) = o~ - ('f}i'Y]j)fC'f}° + 1), 

l~('f}) = l~('f}) = 'f}i, l~('f}) = 'Y]0 ~ 1, 
(12) 

where the identifications 'f}0 = (l - V2)-! and "I) = 
(1 - v2)-h are made. 

The transformation lew) of Eq. (11) will be com­
pletely defined only if a particular triad spanning the 
hyperplane, i.e., the hyperplane observer's spacelike 
frame, has been specified. For simplicity, a special 
hyperplane tetrad {~Il' : f1, = 0, 1, 2, 3} will be defined 
in terms of the superobserver tetrad {ell: f1, = 0, 1,2, 3} 
by 

C~o')Il = 1~('f})CeOr = l~('f}) = 'f}1l, 

(~i')ll = l~('f})(eir = lfC'f}). 
(13) 

Here, the "primed" ("unprimed") subscripts and 
superscripts will label the hyperplane (superobserver) 
tetrad to which the subscript or superscript refers. 
As seen by the hyperplane observer, the tetrad of Eg. 
(13) is written as 

{~Il' : f1, = 0, 1, 2, 3} 

= {~O', e', ~2', e'} 
= ([I, 0, 0, 0], [0, 1,0,0], [0,0,1,0], [0,0,0, In, 

(14) 

where the braces (brackets) enclose the components 
of a vector with respect to the hyperplane observer's 
(superobserver's) tetrad. For the instantaneous 
hyperplane, l~(if) = o~, so that the tetrad of Eq. (13) 
is the superobserver's tetrad, Eq. (1). From Eqs. (12) 
and (13), it is clear that 

(~iy'f}ll = (~i'y(~O\. = 0, 

(~iYW)1l = oi'i' = Oii. 
(15) 

Any other tetrad {'Y], ~i": i = 1,2, 3} is then related 
to the special tetrad of Eq. (13) by a Lorentz trans­
formation r( 'Y]; w') so that specification of an arbitrary 
hyperplane observer's reference frame is equivalent 
to specification of 'Y] and r( 'Y]; w'). In the following 
discussion, the special tetrad of Eq. (13) will be taken 
to be the hyperplane observer's reference frame. 

The transformations discussed from Eq. (9) to Eq. 
(15) are "passive" transformations, in the sense that 
reference frames are transformed. However, the 
"active" interpretation is desired in the following 
discussion. Hence, the hyperplane tetrads to be used 
henceforth will be taken to be known a priori, defined 
by relations of the type (7) and (13). Any other 
hyperplane tetrad may also be used, by specifying it 
a priori by Eq. (13), with l( 'Y]) replaced by r( 'f}; w')/( 'f}). 
With this understanding, there should be no ambiguity 
as to the interpretation of Lorentz transformations. 

In order to discuss the Poincare operations as used 
by a hyperplane observer, it is necessary to find the 
infinitesimal generators for these transformations. 
Following HMP, 8 one may use the transformation 
I('Y]) ofEq. (12), with corresponding operator L('f}), to 
define the hyperplane operators 

H('f}) = LC'Y])POL-1('f}), 

KIl('f}) = l't('f})L('Y])piL-\'Y]), 

JIl('f}) = 1't('f})L('f})JiL-1('Y]), 

NIl('Y]) = 1't('Y])L('Y])NiL-1('f}). 

(16) 

By using Eqs. (3), (5), and (12), it follows that 

H('f}) = rJIlPIl, KIl(rJ) = PI' - rJll(rJ~P~), 

JIl('f}) = t€IlP~vMp~rJv, NIl('f}) = MIlVrJv , (17) 

which are the operators constructed by Fleming.? 
Furthermore, by using Eqs. (8) and' (16), together 
with the identities 

lfCYJ)I;('YJ)gii = gllV - 'YJ1''YJv (18) 
and 

If(rJ)l~(rJ)L(rJ)€ijkAkL-l(YJ) = -€Il VYbAY('YJm6' (19) 

where 

with 
Ak = Pk, Jk, and Nk, 
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one may show that 

[KIl, KV] = 0, [H, JIl] = 0, 

[H, Nil] = iKIl, [KIl, N'] = _i(gItV - rl'f/V)H, 
(21) 

[Kit, J'] = -i€ItVP"Kp'f/a, [JIt, NV] = -i€llvP"Np'f/", 

as was previously shown by Fleming. 7 

Since, from Eq. (17), the canonical generators pll, Ji, 
and Ni may be written as linear combinations of 
Fleming's operators ,7 then these operators also 
generate the Poincare group. As seen by either the 
superobserver or a hyperplane observer, these opera­
tors are not canonical operators in the usual sense. 
The operators defined by Eq. (16) will henceforth be 
called "supercanonical" in that their commutation 
rules are the hyperplane generalization of the canon­
ical rules of Eq. (8). In fact, Eq. (21), together with 
the constraints ('f/K) = ('f/J) = (r;N) = 0, completely 
define the structure constants for the abstract Lie 
algebra of :1'. In the case of the instantaneous hyper­
plane ij = (1, 0), the supercanonical generators are 
identical with the canonical generators Pll, Ji, and Ni 
used by the superobserver. 

The canonical generators used by a hyperplane 
observer may now be defined by 

pO' = H(?') , 

pi' = W")".KIl('Y}) = 1~('f/)KIl('Y}), 

Ji' = (~i'),JIl('Y}) = 1~(?')JIl('Y}), 

N i' = (~i')IlNIlC'fj) = 1~('f/)NIl(r;). 

It follows that, by using Eqs. (16) and (22), 

(22) 

\'J~' = L('f/)\'J~C\'Y}) (23) 

where \'J,t' (\'J~) is one of the canonical generators 
p~' ,J.', No' (p. ,J., N"-) used by the hyperplane observer 
(superobserver). Conversely, the supercanonical gener­
ators may be written in terms of the hyperplane 
observer's canonical generators 

H = po', 

KIl = lipi', 

J" = IfJi', 

N" = IfNi'. 

By defining the quantities 

gi'i' = (;i,)"($ry(gl'v - 'f/I''f/v), 

(24) 

€i'i'k' = (~i't(~i'n~k.)p(~O')"€IlVP'" (25) 

one may show that p.', J.', N~' satisfy Eq. (6), with 
primes on all indices. Hence, the operators of Eq. (22) 
are indeed the canonical Poincare generators used 
by the hyperplane observer whose reference frame is 
the tetrad of Eq. (13). 

An operator which will be seen in Sec. IV to be of 
considerable interest is the helicity operator IT. For 
the m > 0 irreducible representations, the helicity 
operator used by the super observer is given by 

IT = JiPi(PiPi)-~' (26) 

Correspondingly, the hyperplane observer used the 
operator 

(27) 

for his helicity. In terms of the supercanonical 
generators, this hyperplane helicity operator is, from 
Eq. (22), 

IT('f/) = -J"K"( -KvKV)-! (28) 

which, for the instantaneous hyperplane, is just IT of 
Eq. (26). 

III. HYPERPLANE TRANSFORMATIONS 

From Eqs. (17) and (24), it should be clear that the 
supercanonical operators H, K" , J", and Nfl generate :1' 
as seen by either the superobserver or a hyperplane 
observer. Hand KIl generate translations normal to 
and parallel to the hyperplane, respectively, and the 
]I' generate homogeneous transformations within the 
hyperplane. Transformations generated by the J" 
will be called "hyperplane rotations" since the ]I' 

generate a group isomorphic with the group of three­
dimensional rotations. Furthermore, the Nil generate 
homogeneous transformations in all planes containing 
'Y}, transformations which a hyperplane observer sees 
as pure Lorentz transformations. From Eqs. (17) and 
(12), it is easy to see the relationships between the 
various transformation parameters used by the 
hyperplane observer and those used by the super­
observer. 

For an arbitrary translation tea), the hyperplane 
observer uses the operator 

T('f/; t(a» = e-ial"pll' = ei(~"K"-THl, (29) 

where ocll = l!('f/) ai' and T = aO'. For the same transla­
tion, the super observer then uses the operator 

T[t(a)] = e-iall(~)PIl = ei(·IlK"-rHl, (30) 

where it follows that 

all('f/) = l~('f)av'. (31) 

An arbitrary hyperplane rotation r('f) may be 
parametrized in terms of the Euler angles oc, fJ, y 
as seen by the hyperplane observer, with corresponding 
operator 

R['Y}; r('Y}; oc{Jy)] = ei~J3'eifJJ2'eiyJ3' 

= ei~ll(q,«)JIl eifill(q,fJ)Jp. eiYI'(q,y)Jp., (32) 
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where 

oc/l = ocl!(1J), f3/l = f31!(1J), and Y/l = Y';'(1J)· 

The superobserver's operator is 

L[ w(1J; r( ocf3y»] 
= ei !W/lv«3',al M/lVei!wl'v(2',PlM/lVei!Wl'v<a',ylMI'V, (33) 

where 

w"v(3', IX) = IXE/lvPClI~(1J)1JCI, 

w/l.(2', f3) = f3E"vPCll~(1J)1JCI. 
(34) 

Similarly, a pure Lorentz transformation as seen 
by the hyperplane observer has the operator 

L[1J; w(u)] = eiui'Ni
' = eiV,,(ui'lN/l , (35) 

with v,,(u() = 1!(1J)ui'. As seen by the superobserver, 

L[w(1J; u)] = ei!co"v(~;u)M"V, (36) 
where 

IV. HYPERPLANE HELICITY STATES 

The basis states for the irreducible representations 
of 5', as seen by a hyperplane observer, may now be 
constructed. Here, only the m > 0 case will be 
considered. As in the conventional treatment,l basis 
states are labeled by the eigenvalues of the various 
hyperplane observer's operators, consistent with 
Eq. (8) with primes on all indices: 11J; (ms)Ep},), 
which satisfies 

pi' 11]; (ms)Ep},) = pi' 11]; (ms)Ep},), 

pO' 11]; (ms)Ep},) = E(hh + m2)! 11]; (ms)Ep},), (38) 

~(1]) 11]; (ms)Ep},) = E 11]; (ms)Ep},), 

TI(1]) 11]; (ms)Ep},) = }'11]; (ms)Ep},), 

where ~(1]) = pO'llpo'l is the hyperplane observer's 
sign-of-the-energy operator and TI (1]) is his helicity 
operator, given by Eq. (27), Here, p is taken to 
represent [pI', p2', p3']. The first entry in the ket 
symbol, followed by a semicolon, is used to specify 
the observer's tetrad. In this case, 1] specifies the 
special hyperplane tetrad of Eq. (13). 

The normalization is taken to be 

<1]; (ms')E'p'A' 11]; (ms)Ep}.) 

= 2w(p)bs'/J.,/J;.,/J3(p' - p), (39) 

where w(p) = (PiPi' + m2)~. These states are, as 
seen by the hyperplane observer, the same as the 
conventional states used by the superobserver. 

Using the little-group technique,9 one defines the 
state 11]; (ms)EO},) which corresponds to a hyperplane 

• L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 
SO, S8 (1936); E. P. Wigner, Ann, Math. 40,149 (1939), 

standard four-momentum p = Em[!. 0, 0, 0], such 
that 

(40) 

As seen by the superobserver, this standard momentum 
is p/l = Em1]/l. The parameter A is defined to be the 
component of spin in the ~3' direction so that 

(41) 

The little group is the group of transformations which 
leave p fixed, which is in this case the group of 
hyperplane rotations, :1t(1]). Under operations of 
:1t(1]), the states of Eq. (40) transform according to 

R(1J, r(1J; lXf3y» 11]; (ms)EO},) 

= I~;;.[r(1J;IXf3y)] 11J;(ms)EO/-l), (42) 

" 
where r( 1]; lXf3y) is a hyperplane rotation with Euler 
angles IX, f3, "I, and with corresponding operator 
R[1]; r(1]; lX,8y)] given by Eq. (32). Also, ~8(r) is the 
usual (2s + I)-dimensional irreducible representation 
matrix of the rotation group. 

The general state is then defined by 

11]; (ms)Ep),) = H~(1]; p) 11]; (ms)EO},), (43) 
where 

H~(1J; p) = R(1J; r(p»Zf(1]; Zf(p'». (44) 

The transformation Zf(1]; p'), with operator Zf(1]; 
z'(p'», is a Lorentz transformation in the ~3' direction 
such that 

Zf('I'j; p')p = p' = [E(m2 + p2)i, 0, 0, p], (45) 

with P = (Pi'h)t.. The transformation rep), with 
operator R(1]; r(p», is a hyperplane rotation such that 

r(p)p' = p = [E(m2 + p2)!,pl',p2',p3']. (46) 

The general state defined by Eq. (43) is then seen to 
transform under a general hyperplane transformation 
1(1], w(1]» according to 

L['I'j; 1('I'j; w)] 11J; (ms)Ep},) 

= I ~;;.[t(1]; 1)] 11]; (ms)Ep'ft), (47) 

where 

and 

I' 

Pl' = 1;:(1]; W(1]»Pi' 

t['I'j; l] = h~(1]; Ip)-llh~(1],p) 

(48) 

is an element of the little group :R(1]), with operator 

T[1]; 1(1], w)J = H~[1], ipJ-1L(1]; I)H~(1],p). (49) 

From Eqs. (41), (43), (27), and 

H;lTIC1])Ho = Z'-lTI(1])Z' = J3', (50) 

it follows that 

(51) 
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Hence, the general hyperplane state of Eq. (43) is an 
eigenstate of the hyperplane helicity operator n(l}), 
A being interpreted as the component of spin in the 
direction of p = [pI', p2', p3']. For the particular case 
of the instantaneous hyperplane, these states are 
identical with the conventional helicity states: 

Ii); (ms)€pA) = I (ms)€pA). (52) 

It was seen in Sec. III that the Poincare group as 
seen by a hyperplane observer may also be param­
etrized in terms of superobserver variables. Indeed, 
by utilizing the intermediate status of the super­
canonical generators, the hyperplane helicity states 
may now be written in terms of parameters used by 
the superobserver. Such states may be defined by 

Ii); (ms), €(1j), k(1j), A(1j» = 11j; (ms)€pA), (53) 

where k/l = (~i\.Pt = 1~(1j)Pt is the hyperplane 
momentum as seen by the superobserver. Where the 
context permits, these states will be written as 
Ii); (ms)€kA), where it is understood that k = k(l}), 
€ = €(1}), and A = A(l}). Due to the constraint 
l}/lkll = 0, the symbol k(P) in the ket ofEq. (53) need 
only represent (kI, k2 , k3). Then, from Eqs. (24) and 
(38), it follows that 

H(l}) Ii); (ms)€kA) = €(m2 + k2)11i); (ms)€kA), 

KIl(1J) Ii); (ms)€kA) = k"li); (ms)€k).), 

~(1j) Ii); (ms)€kA) = € Ii); (ms)€kA), 

n(1J) Ii); (ms)€kA) = A Ii); (ms)€kA), 

(54) 

where k 2 = -k/lk/l ~ 0 and kO = Yj • K/1jo is well 
defined. From Eq. (47), these states are seen to trans­
form according to 

L[l(1j, w)] Ii); (ms)€kA) 

= L ~;A[t(1j, I)] Ii); (ms)€k1f1), (55) 

where k~ = 1;<1j, 1(1j, w»kv with 

1;<1j; 1(1J; w» = l~(1j)lr(1j; w)I;(1j) 

= W\lr(1J; w )(~ i'Y' (56) 

By using Eqs. (33) and (36), the hyperplane observer's 
operators L(1j, /) and T(1j, t) have been replaced by 
the corresponding operators L(l(1J, w» and T(i(rJ; w» 
used by the superobserver. 

The normalization of the hyperplane states of Eq. 
(53) is found by considering the invariant integral 

I =J d
3
p (1j; (ms')€'p'A' 11J; (ms)€pA) = c).,A,.c)n 

2w(p) 
(57) 

used by the hyperplane observer. This integration 

can be extended to po' by noting that since d3p = 
dpl' dp2' dp3' and 

J d3pF(p) = J d3pF(p) J dpo'c)(po') = J d'pF(p)l5(p°'), 

(58) 
then 

1= -P-I5(l')(rJ; (ms')€'p'A' 11j; (ms)€pA). f d' 

2w(p) 
(59) 

Alternatively, the variable transformation Pll' = 
1;( 1J)kv yields 

I =f d
4

k6(rJk) 1 (i); (ms')€'k').' I i); (ms)€kA), (60) 
2(m 2 + k2

) 

where k2 = -k/lk", and d4p = d4k and po' = l~kv = 
1Jvk v have been used. Hence, the normalization is 
given by 

(i); (ms')€'k'A' I i); (ms)€kA) = I5 s,A,.l5n 8(k' - k), 

(61) 

where, analogous to the usual Lorentz invariant 

J(p' - p) = 2w(p)I'P(p' - p), 

8(k' - k) == 21jO[ m
2 + kiki - (1J~~irr 153(k' - k). 

(62) 

V. CONNECTION BETWEEN HYPERPLANE 
STATES AND CONVENTIONAL HELICITY 

STATES 

To see the connection between the Poincare basis 
states of the hyperplane observer and the conventional 
helicity states used by the superobserver, it is perhaps 
easiest to first note that the hyperplane rest states of 
Eq. (40) are related to the conventional rest states! by 
the transformation 1('1) of Eq. (12): 

IrJ; (ms)€OA) = L(l}) Ii); (ms)€OA), (63) 

where 

1(1j)(€m,O) = €ml(1j)i) = €m1J = [€m, 0]. (64) 

The transformation 1('1) may be used either in the 
passive sense, in which case it transforms the tetrad 
{ell} into {~Il'}, as seen by 1(1J) (€m, 0) = [Em, 0], or in 
the active sense, in which case it transforms Po = 
(€m, 0) into pll = €m1J". Acting on the ket vector used 
by the superobserver, L('YJ) must be taken in the active 
sense, since the ket is associated with the fixed super­
observer tetrad {ell}. Appearance of the passive 
possibility is due to the definition, Eq. (13), of the 
hyperplane observer's tetrad. 

Using the transformation property Eq. (55) for the 
instantaneous hyperplane states, which have been 
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seen to be identical with the conventional states,! 
Eq. (63) becomes 

I't]; (ms)EOA) = ! ~!;.[t(ii; I('t]»] Iii; (ms)Epfl), (65) 
I' 

where pI' = Em't]l' and 

t(ii; l('t]» = H~(ii; 1('t])p)-lL('t])H~(ii; p) (66) 

is an element of the group of rotations in the instan­
taneous hyperplane. Also, from Eq. (23), it follows 
thatJ3' = L('f})J3L-l('t]) so that the helicity interpreta­
tion is clearly preserved: 

J3lii; (ms)EOA) = L-l('t])J3'L('t])L-l('t]) I't]; (ms)EOA) 

= A Iii; (ms)EOA). (67) 

From Eq. (43), the general state for the instanta­
neous hyperplane is given by 

Iii; (ms)EpA) = H~(ii; p) Iii; (ms)EOA), (68) 
with 

P = h~(p)po = r(p)z~(p)po. (69) 

Here, h~(p) == h~(ii, p) is a Lorentz transformation 
z~(p) in the e3 direction which takes Po = (Em,O) into 
p' = (E(m2 + p2)!, 0, O,p), followed by a rotation 
rep) = r(ii,p)whichtakesp'intop = (E(m2+p2)t,p). 
Then, by using Eqs. (43), (63), and (66), the connec­
tion is found to be 

I't]; (ms)Ep'A) = H~('t]; p)L('t])Hr1(ii, p) Iii; (ms)EpA), 

(70) 
with 

(71) 

and p' and p refer to the same momentum vector as 
seen by the hyperplane observer and superobserver, 
respectively. However, from Eqs. (12) and (13), one 
also sees that 

(72) 

hyperplane tetrad {~I"} so that, in Eq. (72), the 
transformation I( 'f}) must be interpreted in the passive 
sense. With the understanding that the corresponding 
active and passive transformation operators are 
related by Lact = Lpiss' it follows that 

(73) 

with the active interpretation. Hence, Eq. (70) 
simplifies to 

Iii; (ms)Ep'A) = L('f}) Iii; (ms)EpA). (74) 

The super observer's hyperplane helicity state is then 
related to his helicity state by 

Iii; (ms), E('f}), k('t]), A('t]» = L('t]) Iii; (ms)EpA) , (75) 

with 

ki't]) = l!('t])p;, = 1!('t])I~('t])Pv = PI' - 't]i't]~Pv)' 

It then follows that the connection between the 
states used by observers on two different hyperplanes 
't]1 and 't]2' with corresponding tetrads g~J and {~I'I} 
defined by Eq. (13), is given by 

1't]2; (ms)Ep2A) = L('t]2)L-l('t]1) 1't]1; (ms)EPIA) (76) 

where (P2)1' , = 1;('t]2)1~('t]I)(Pl)a" The superobserver's 
hyperplane helicity states for the two hyperplanes are 
then related by 

Iii; (ms), E('t]2), k('t]2), A('t]2» 

= L('t]2)L-I('t]I) Iii; (ms), E('t]I), k('f}I), A('t]I», (77) 

where 

k;('t]2) = (t5~ - 't]2i't]~)[k.('t]I) + hl 't]lv], 

hI = (PI)O' = E(m2 - kll'k~i, (78) 

ki't]l)'t]~ = kl'('t]2)'t]~ = O. 
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It. is shown quite gener~lly, through a correspondence be~ween S-matrix and classical descriptions of 
partl~l~ states and of ~helr measu;ements, ~h~t an ~-matnx. theo;y act~ally leads, under appropriate 
conditions, to the classical space-time descnptlOn of mteractlOns, mvolvmg the usual classical concepts 
and formulas. 

I. INTRODUCTION 

Does S-matrix theory describe such complicated 
processes as the creation of straight tracks in a bubble 
chamber? This is the kind of questions that we aim to 
solve. 

The above process is usually described in a classical 
way. In that classical description, since particles 
propagate in space-time, they can be submitted to 
some measurement or can have some interaction with 
other particles. The concepts of localization in 
space-time, of locality of an interaction, of causality, 
and of separate or successive interactions are used 
and corresponding formulas are written. 

On the other hand, the theorist introduces an S­
matrix formalism to which all the above concepts are 
foreign at first. 

Our purpose is not only to study which more or less 
qualitative hints indicate that S-matrix theory could 
actually describe the processes quoted above, but 
mainly to show, through a correspondence between 
S-matrix and classical descriptions, that, under special 
conditions, S-matrix theory actually leads to the 
usual classical description and formulas. 

What we are going to do is, then, as follows. 
In Sec. H, we recall the general features of S-matrix 

formalism and study to what extent some general 
properties of the S matrix can be good candidates to 
account for classical concepts. 

In Sec. III, we establish a correspondence between 
S-matrix and classical descriptions of particle states 
and their measurement apparatus and study why, 
when, and to what extent it is a good candidate in 
order to compare S-matrix and classical results. 

In Sec. IV (for single scattering) and Sec. V (for 
multiple scattering), we will then actually show how 
S-matrix theory leads to the classical formulas for 
transition probabilities in many interesting cases. 

In Sec. VI, we show how these results lead to the 

• This work is an enlarged and revised version of "S-Matrix 
Theor~ and.Phenomenological Space-Time Description," University 
of CalIfornIa, Berkeley, preprint. 

usual classical description of preparation and evolu­
tion of a state and as an example, we answer the above 
straight-tracks problem. 

Spin less particles with nonzero masses are con­
sidered and we adopt a system with Ii = c = I. 

II. S-MATRIX FORMALISM: GENERAL 
PROPERTIES 

The general features of an S-matrix formalism are 
given in Sec. II.A. Sections II.B-H.D are devoted to the 
study of the general properties which can account for 
the classical concepts and formulas. 

Among those, some are closely related to the 
classical aspect of the description of the states (locali­
zation in space-time, locality of an interaction, etc.). 
Some others can be stated in the form of a property 
(P) of the transition probability, which is independent 
of the detailed description of the states, involving only 
space-time translations of states. 

This concept of space-time translations IS mtro­
duced in S-matrix formalism by assuming the existence 
Of. a representation of the Poincare group in the 
Hilbert space of states; a usual line of thought is the 
following: the property (P) of the transition proba­
bility will also be assumed, in some way to be made 
precise, in S-matrix theory. One looks for the induced 
property of the S matrix or S-matrix elements, which 
we call (H). 

Conversely, one determines if some hypothesis of 
type (H) gives back property (P)-at least under 
special conditions. If these are less restrictive than the 
conditions used to obtain the classical formulas, it is 
reasonable to think that the hypothesis (H) actually 
accounts for the classical concept and formula corre­
sponding to (P). 

In Sec.II.B, we study how Poincare invariance of the 
transition probability is related to the "energy­
momentum conservation" of the S matrix. In Sec. lI.C, 
we study how some cluster property of the transition 
probability is related with a property of the connected 

1241 
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amplitudes of a cluster decomposition (following 
Refs. 1 and 2). 

It is tempting to use this approach in order to 
account for the classical concept of successive (or 
multiple) scatterings. However, it becomes in that 
case rather ad hoc to get precise results. A general 
discussion is given in Sec. n.D and a more precise 
short account of what can be said is given in Appen­
dix A. 

A. General Features 

The S matrix is usually understood as an isometry 
of a Hilbert space .:Ie. 

In the following, we consider the usual Fock space. 
One-particle states are the space V(R3) of square­
integrable functions and many-particles states are de­
scribed in the corresponding Fock representation. 

The transition operator T is defined through 

S = 1 + iT. (1) 

An ensemble of final states ofn particles is described 
by an efficiency matrix Fn. The operator Fn is 
Hermitian and positive-definite, as is 1 n - Fn as well, 
where In is the identity operator of the subspace of 
n-particle states and 

Os Fn S In. (2) 

With some orthonormal basis I Til, F can be written 
as F = Li ci I T;l( Til, where the efficiency coefficients 
Ci for the state I Ti) are positive and less than unity. It 
leads to the general characterization given here in 
Eq. (2). 

As is well known, a density matrix, furthermore, 
satisfies the equation Li Ci = 1 which leads to Eq. (3). 

An initial state of m particles is similarly described 
by a density matrix ~m which satisfies 

o S ~m S 1 (2') 
and, furthermore, 

Tr(m) ~m = 1. (3) 

The transition probability W of an initial state 
described by the density matrix ~m , when the measure­
ment apparatus is described through the efficiency 
matrix Fn , is 

W = Tr ~mTmJnT~n' (4) 

where T mn is the restriction of T to the initial space of 
m particles and the final space of n particles. 

Because of the above properties of ~, F, and T, the 
transition probability W enjoys the expected property 

Os W S 1. (5) 

1 E. H. Wichmann and J. H. Crichton, Phys. Rev. 132, 2788 
(1963). 

2 J. R. Taylor, Phys. Rev. 142, 1236 (1966). Other interesting 
aspects of the cluster decomposition are discussed in M. Froissart 
and J. R. Taylor, "Cluster Decomposition and the Spin Statistics 
Theorem in S-matrix Theory," Princeton University preprint, 1966. 

Tn the following, it will be useful to consider the 
kernels associated with the operators T mn' Smn' ~m' 
Fn in the momentum representation. 

The normalization will be 

I ~:o Ip)(pi = 1, 

(p I p') = 2poo(p - p'), 

Po = (p2 + m2)t. 

(6) 

The kernels exist as temperate distributions, the 
order of which can be bounded. Consider, for the 
sake of simplicity, an operator A bounded from 
V(R3) to V(R3). It can be extended toa continuous 
operator from S to S', which implies that the kernel 
exists as a temperate distribution due to the nuclear 
theorem. As it is, furthermore, continuous from 
V(R2) to V(R3), the order of this distribution can be 
shown to be bounded by Eq. (4). Due to properties 
(2'), (3), the kernel ~m(Pl ... Pm' p~ ... P;") is also a 
square-integrable function 

II I' ( , )1 2 dpi dp{ 'om PI ... , PI . .. -'" -, ... = 1, (7) 
2PIO 2PIO 

The transition probability W can then be written as 

W = I ~m(P{ ... P;", PI ... Pm)F n(ql ... qn' q{ ... q~) 

x Tmn(PI ... Pm' ql ... qn) 

'X T!,nCp{ ... P;", q{ ... q~) 
md nd md,nd' 

X II ~ II ~ II ~ II --9f. . (8) 
i~l 2PIO i~l 2qlO i~l 2PIO i~l 2ql0 

One should keep in mind that the meaning of the 
right-hand side of Eq. (8), where products of distri­
butions have been written, is nothing else but the 
right-hand side of Eq. (4). However, we will in the 
following make further hypotheses on the kernels 
involved and use approximations which will explain 
the use of Eq. (8). 

B. Energy-Momentum Conservation of the S Matrix 

The property (P) which is considered here is 
Poincare invariance. Let us assume that it holds in 
S-matrix theory for any given initial and final states 
and every element (a, A) of the Poincare group 

W(a, A) = W. (9) 

It implies the existence of a phase ()(a, A) such that 

U(a, A)TU(a, A)-l = ei8(a,AlT. (10) 

U(a, A) is the representation of the Poincare group. 
Equation (10) is obtained using the theorem that two 
linear bounded operators such that </1 A Iq) = 0 <=? 

</1 B Iql = 0, for all (j, q), are proportional. The 
modulus of the proportionality constant is unity here. 
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The phase 0, being a representation of dimension 
one of the Poincare group, is a constant. Thus, 

[U, T] = 0. (11) 

Let us note that a postulate concerning only trans­
lational invariance (of the transition probability) 
would not be sufficient to get a similar result (with U 
being a representation of the translations). 

Equation (11) implies, in particular, the "energy­
momentum conservation" of the S matrix. A precise 
definition of what is meant in general by energy­
momentum conservation of an operator and its rela­
tion with translational invariance of this operator is to 
be found in Ref. 3. 

The case of a Fock space and of the S matrix is a 
special one. 

If we look at the properties induced for the matrix 
elements, Eq. (11) implies that the matrix elements 
T mn can be written as a product of a global c5 function 
of "energy-momentum conservation" by a kernel tmn 

defined on the corresponding hyperplane: 

Tmn(Pl' .. ,ql ... ) = tmnc5(~/i - i~ q} (12) 

This result is obtained by considering the quantity: 

T;,;~(a) = J Tmn(Pl ... , ql .. ')q:{Pl ... , ql ... ) 

X exp [ia(L Pi - L qi)J7T dpi 1T dqi' 

Taking its derivative with respect to a yields 
oT(<p) 
-- = 0, i = 0, 1,2, 3, (13) oai 

C~/i -i~ qi) Tmn = 0, (14) 

which yields Eq. (12). As a matter of fact, we get 
formula (12) only when the distribution kernel T mn is 
restricted to the dense subspace of test functions with 
supports such that all velocities cannot be equal all 
together. 

Conversely, assuming energy-momentum conserva­
tion of the S matrix, we get translational invariance 
of the S matrix, of the transition amplitudes, and thus 
of the transition probabilities for all initial and final 
states. 

If the assumption is that the T-matrix elements 
satisfy Eq. (12), it yields translational invariance of 
the transition amplitudes (and probabilities), at least 
for a dense subspace of states (which depends on the 
nature of the tmn). 

C. Cluster Property of the S Matrix 

One deals in a similar way with the concept of 
separate interactions. 

3 D. N. Williams, J. Math. Phys. 8, 1807 (1967). 

As in the classical case, it is assumed that the main 
contribution to the transition probability, when 
subgroups of initial and final particles are taken away 
through 4-vectors a, b, ... , is obtained by calculating 
the product of partial transition probabilities. 

What is meant by main "contribution" is made pre­
cise by Taylor2 as a condition of uniform convergence 
in la2 + a~l, Ib2 + b~l, .. " for la2 + a~1 ---+ + 00, 

Ib2 + b~1 ---+ + 00, .... He is then able to show that 
it implies a factorization property of the transition 
amplitudes. 

As emphasized by Wichmann and Crichton,l then 
Williams,3 we can, independently of the property 
stated above, consider a cluster parameterization of the 
S matrix (which is just a combinational mechanism): 

(15) 

where I is 'any decomposition of the set m, n into 
subsets. 

A result by Williams3 tells us that the T:"n param­
eters are also bounded operators,as are the Tmn. In 
this special case, they also conserve "energy-momen­
tum" as do the T mn operators and their kernels can 
also be written as the product of a c5 function of 
"conservation of energy-momentum" with a kernel 
defined on the corresponding hyperplane: 

T:'nn(Pl' .. Pm' ql ... qn) = t:'nnc5(~ Pi - ~ q} 

(16) 

The factorization property of T mn is then equivalent 
to a further property of the conneoted amplitudes: if 
subgroups of initial and final particles are taken away, 
the amplitude of the matrix T;;'n goes to zero. 

It may seem too strong to consider the factrization 
property for all initial and final states and some 
authors1.2 prefer to consider it only for subspaces of 
states-for instance the subspaces ~ or S (of test 
functions of distributions or temperate distributions) 
of V(R3). The special conditions used to obtain the 
classical formulas are, in the usual cases, still more 
restrictive. The equivalent property of the matrix 
T;;'n stated above refers to the subspace considered. 

In all cases, the T;;'n kernels have the form given in 
Eq. (16) and, in particular, the t;;'n kernels do not 
contain any 0 function of partial conservation of 
energy-momentum (nor any derivative of 0, of 
course). Further hypotheses on these kernels wiIl be 
studied in the foIlowing. 

D. One-Particle Singularities 

Let us consider a scattering involving initial particles 
A, B, C and final particles AI, B l , Cl' The kinematical 
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and other (superselection rules, etc.) conditions allow 
the possibility of partial scatterings A + B -+ Al + M, 
M + C -+ B1 + C1, for some particle M-all other 
partial scatterings of this type being forbidden. 

If particles C, B1 , C1 are taken away with a timelike 
4-vector P (Po> 0) the main contribution to the 
classical transition probability is obtained through a 
formula corresponding to successive scatterings A + 
B-+Al + M, M + C~B1 + C1. 

One first determines the state of the real intermedi­
ate particle M, which may be either stable or not. The 
probability of the second scattering is then calculated 
and gives the final result. 

In that case, the description of the intermediate 
particle state is involved. Let us note that, in the usual 
classical situations, the two scatterings can be well 
enough localized in space-time and the intermediate 
particle M can be considered as freely propagating 
when the second scattering takes place. 

If it is, furthermore, a stable particle, the above 
property of the transition probability can be stated 
independently of the description of the states. 

The following property (P) would then be assumed 
in S-matrix theory: the main contribution for large 
Po to the transition probability of the scattering 
A + B + C -+ Al + B1 + C1 is obtained by con­
sidering a first scattering A + B -+ Al + M, evalu­
ating the final state of particle M, reinterpreting it as 
an initial state, and calculating the transition proba­
bility of a second scattering M + C -+ B1 + C1. 

One uses then the same line of thought as in Secs. 
n.B and II.C. What is meant by main contribution can 
be made precise with the help of more or less strong 
hypotheses which imply the existence of the well­
known propagator in connected S-matrix elements.4- s 

Conversely, one may assume a polelike behavior 
of the S-matrix elements plus some related hypotheses 
and find back the above property of the transition 
probability.7-9 

One may also assume a Landau-type behavior of the 
S-matrix elements. Simple qualitative argumentslO are 
hints which indicate that Landau singularities in the 
physical region may correspond to some related 
physical processes. Then, it is also possible to deduce 
some related property of the transition amplitude,7 
thus the transition probability. 

• G. Wanders, Helv. Phys. Acta 38, 142 (1965). 
• k. Hepp, J. Math. Phys. 6, 1762 (1965). 
6 D. I. Olive, Phys. Rev. 135, B745 (1964). 
7 A. Peres, Ann. Phys. (N.Y.) 37,179 (1966). 
8 H. P. Stapp, Phys. Rev. 139, B257 (1965). 
9 D. Iagolnitzer, J. Math. Phys. 6, 1576 (1965). A first study to 

show how S-matrix formalism leads to the classical formulas will 
be found in particular cases. 

10 S. ~oleman and R. E. Norton, Nuovo Cimento 38 (1965). 

We give an account of such attempts in Appendix A. 
However, the hypotheses used, either in the precise 

statement of property (P), or together with the polelike 
or Landau-type behavior to get some property of the 
transition amplitude, are rather arbitrary and not 
unique. On the other hand, even if we assume any of 
them, the classical formulas have still to be obtained. 

We will then, assuming the polelike behavior in a 
weak form, directly show how it leads, under special 
conditions, to the classical description and formulas. 9 

III. CORRESPONDENCE BETWEEN QUANTUM­
MECHANICAL AND CLASSICAL DESCRIPTIONS 

OF STATES 

Section lILA is devoted to the analysis of the classi­
cal description of particle states and their measure­
ment apparatus through probability densities and 
measurement efficiencies in phase space. 

Following Wigner,1l·12 we introduce the density and 
efficiency functions associated in quantum mechanics 
to the density and efficiency matrices. Invariant 
density and efficiency functions are also introduced. 
The general properties of such functions are studied 
in Sec. III.B. Cases where the Wigner functions are 
actually positive and smaller than one are given. In 
all cases, it is shown that these functions, once they 
have been smoothed out over a phase space region of 
dimensions larger or equal to one are always positive 
and smaller than one (i.e., enjoy a property required 
for the classical probability density or measurement 
efficiency) . 

Invariant density or efficiency functions are shown 
to enjoy a similar property in the approximation 
where the quantity l/m is negligible compared to the 
space diameter of the phase-space region considered. 
Note that l/m = Ii/me. In the nonrelativistic case, the 
condition is then always satisfied (e = + (0). 

These properties are already a first hint that such 
functions are actually good candidates for a corre­
spondence between quantum-mechanical and classical 
descriptions. 

In all what follows, a situation will be said to be of 
a classical type if the density or efficiency functions 
involved can be replaced with a good approximation 
by functions enjoying the properties of classical 
probability density or measurement efficiency. We 
also say that the classical approximation can be used, 
and we obtain a classical-type formula. 

11 E. P. Wigner, Phys. Rev. 40, 749 (1932). 
12 For a review of the applications of the phase-space formula­

tion of quantum-statistical mechanics, see H. Mori, J. Oppenheim, 
and J. Ross, in Studies in Statistical Mechanics, J. de Boer and G. E. 
Uhlenbeck, Eds. (North-Holland Publ. Co., Amsterdam,. 1962), 
Vol. 1, p. 272-298. It is a kind of work analogous to what IS done 
in our work· in the nonrelativistic case when equations of evo­
lution with time are used. 
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In Sec. ULe, it is shown that density or efficiency 
functions are themselves of a classical type, without 
smoothing, if they are slowly varying over a phase­
space region of dimensions large compared to unity. A 
similar property holds for the invariant functions if, 
furthermore, 11m is small compared to the space 
diameter of a region for which the above property 
holds. 

All these results are new hints that the correspond­
ence is a good one. We will use it in the following parts 
and the fact that it will allow one to obtain classical­
type formulas in many cases of interaction processes 
proves that the whole scheme is consistent. 

A. Classical Description 

In classical formalism, the state of a particle is 
described by giving its current j)!(P, x), where jo is the 
probability density of finding the particle at point x 
with momentum P and j is the current density. 

For a freely propagating stable particle of mass m, 
the following properties hold: 

'j)l!j)! = O. (17a) 

The current j)! is proportional to p)! and we define 
the current intensity j(P, x) through 

j(P, x) = jfl/2Pfl' (17b) 

The quantity j(P, x) has the form 

j(P, x) = g(P, x - (P/Po)XO)J(P2 - m2)6(Po). (17c) 

The function g is the probability density in phase 
space and contains all the information [the fact that 
the mass is known to be m and the particle is known 
to be freely propagating have been used in writing 
(17c»). 

A final property is 

fjo(p, x) dP dx = f g(P, y) dP dy = 1. (17d) 

The function g defined above is a positive measure 
(as well as j). 

A "pure case" is 

g(P, y) = t5(P - Po)i5(y - Yo). 

The description of a measurement apparatus of a 
particle is done in the same way by defining its 
efficiency E(P, x) for detecting a particle at point x 
with momentum P. 

With similar hypotheses, E has the form 

E(P, x) = E(P, x - (PjPo)XO)O(P2 - m2)(}(Po), 

(I8a) 

where the quantity E is the measurement efficiency in 
phase space. 

For every given quantity g satisfying Eqs. (17), € 

has to satisfy 

o ~ f €(P, y)g(P, y) dP dy ~ f g(P, y) dP dy = 1. 

(l8b) 

It seems "physically reasonable" to consider that 
€ belongs to the class of Borelian functions satisfying 

o ~ €(P, y) ~ 1. (l8c) 

One could choose a more general definition, mathe­
matically speaking [we only want S €g to be defined for 
all measures g}. 

Physically speaking, some authors prefer to restrict 
E to be a continuous function. An apparatus with 
efficiency one inside a box and zero outside this box 
is then excluded. 

Information theory13 allows one to determine the 
quantity g (or €) corresponding to a given information. 
The quantity 

I g(P, x) In g(P, x) dP dx 

has to be made minimal with respect to the given 
information. 

If we know a set of quantities 

r i = f g(P, x)RlP, x) dP dx 

for a set of functions Ri' the solution has the form 

g(P, x) oc exp [-L AiR;(P, x)]. (19) 

For instance, if we know the position and momen­
tum of the particle to be Po and Xo with root-mean­
square deviations Ail)' A l1 , there is a solution for all 
Po, Xo, A"" Av: 

go(P, x) = (27T)3(~.,Av)3 exp [- HX ~",Xo)] 
x exp [ - HP ~11 PO)} (20) 

More generally, if we know the distribution in 
momentum and position to be a positive measure 
ft(P, x), with rms errors A"" Avon the measurement of 
position and momentum, the solution is the convolu­
tion: 

where 

(2Ib) 

13 See, for instance, A. Katz, Principles of Statistical MechaniCS, 
The Information Theory Approach (the Weizmann Institute Lectures, 
1963). 



                                                                                                                                    

1246 DANIEL IAGOLNITZER 

B. Wigner-Iike Density and Efficiency Functions 

We go back to the quantum-mechanical description 
of one-particle states and measurement apparatus by 
means of density or efficiency matrices and we asso­
ciate to them the following quantities: 

(P ) f ~(p, p') [.( ') ] g w ,x = ! ! exp I p - P x 
(2po) (2p~) 

x b(t(p + p') - P) dp dp', (22) 

h(P, x) = f ~(p, p') exp [i(p - p')x] 

, dp dp' 
x b(t(p + p ) - P) - -, , 

2po 2po 

= jz(P, x - (pjPo)xo) (23) 

jF(P, x) = [fh(AP, x) dA }~(P2 - m2)8(Po) 

= gF(P, x - (PjPo)xO)b(P2 - m2)O(Po), 

(24) 

and similar quantities EW, Ez , EF associated with the 
efficiency matrix F. 

As a matter of fact, the quantities to be compared 
with the classical probability density are (21T)-3 times 
gw or h,h, gF. The quantities to be compared with 
the classical measurement efficiency are E w' E z; E F' 

EF· 

All the kernels involved are temperate distributions, 
which give a precise meaning to the Fourier trans­
formations considered as temperate distributions. 

The function gw is the usual Wigner function. ll The 
functions hand jF are more suited in the relativistic 
case for reasons of covariance. The function j F 

formally has the same form as in the classical case 
[Eq. (17c)]. 

Our purpose is now to study the properties of these 
various quantities in Sec. III.B and to show how they 
behave under special conditions in Sec. lILe. We 
first begin by studying the properties of gw and EW 

for the sake of clarity. 

1. General Properties of Wigner Functions 

The quantItIes gw, introduced by Wigner,12 and EW 

are, as stated above, well-defined distributions. As 
for gw, it is also a square-integrable function due to 
Eq. (7). As is well known, these real quantities are 
not always positive. 

To find which ~ and which gw correspond to a 
given information on a system, one makes the 
quantity Tr?; In?; minimal according to the given 
information.I3 

Cases where the Wigner function is positive. We 
first study cases where gw is actually positive. 

Take the special case where the information comes 
from "measurements of position and momentum" 
of the particle. For instance, as in the classical case 
studied above, we know the position Xo, the momen­
tum Po with rms errors Ax and Ap or, more precisely, 

Tr ?;Xop = Xo, 

Tr ~Pop = Po, 

Tr ~(Xop - XO)2 = A!, 

Tr ~(Pop - PO)2 = A!, 

(25) 

where Xop is the usual Newton-Wigner operator. 
The Wigner functioll is then found to be formally 

identical to the probability density of the similar 
classical case 

1 1 [1 (x - XO)2] 1 gm(P x) = -- - exp - - -- -
", (21T)3 A3 2 A A3 x x p 

X exp [ - HP ;pP
o
)} (26) 

It is the Wigner function of a density matrix ~ if and 
only if A",Ap ~ t: 

1 1 
~---­

- (21T)3 (A~A;)3 

[ 
1 (Pop - PO)2 1 (Xop - Xo)2] X exp - - --
2 A' 2 A' , 

p x 
where 

e:)2 = e:)2 = A~A; tan~ (ljA~A;) . 

(27) 

Thus, the Wigner function is actually positive. More 
generally, if we know a "phase-space distribution" 
ft, with rms errors Ax, Ap in the measurements of 
position and momentum (AxAp ~ t), the Wigner 
function takes the form 

where 

T (x) = --!. -.L exp (_ .! X2). 
A. (21T)2 A; 2 A! 

A similar result would be obtained for EW. 

The following result then holds: if:ft satisfies the 
properties required from a classical probability density 
(positive measure of sum one) (respectively, the 
properties of a measurement efficiency 0 ~ ft ~ 1), 
then gw (respectively, EW) is actually the Wigner 
function of a density matrix (respectively an efficiency 
matrix). 

General properties. As is well known, even if the 
Wigner function is not positive, the marginal proba­
bilities of gw in x or P are positive (and equal to the 
quantum-mechanical probability in x or P). 
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The most interesting property is the following: 
the function gw (respectively, €w) once smoothed out 
over any phase-space region of dimensions larger than 
or equal to unity, is always positive and smaller than 
one-i.e., satisfies the property required from a 
classical measurement efficiency 

o S €w(P, x) * TBJX)TBJP) S 1, 
for BxBp;;::: t. (29) 

The discussion is given in Appendix B. 
Another well-known property concerning measure­

ment results is the following: 

Tr ,F = f gw(P, x)€w(P, x) dP dx. (30) 

This is, then, a formally classical-type formula. 
We recall however that, as is well known, the Wig­

ner function-which is generally defined with the same 
Wigner transformation as used in the special cases of 
the density or efficiency matrix-associated with a 
product of two bounded operators, is different from 
the product of the Wigner functions: 

(AB)w(P, x) 

= f (A)w(P', x')(B)w(PII

, x") 

X exp [2i : ~, :,] dP' dP" dx' dX". (31) 

1 P" x" 

Then, however small we choose Bx , A~ is larger than 

Ax· 

2. General Properties of Invariant Density or 
Efficiency Functions 

As already stated, the functions hand h are co­
variant. Furthermore, h enjoys the property ex­
pressed by Eq. (17c). We will be interested in this 
section in the function gF' 

It is a covariant function, as opposed to gw, but it 
does not enjoy anymore the properties given in Eqs. 
(29) and (30). We will now show that it almost enjoys 
in some sense the property expressed in Eq. (29) for 
gw. The invariant density or efficiency functions 
smoothed out over a phase-space region of dimensions 
larger than or equal to one, are positive and smaller 
than one, in the approximation that the space diam­
eter of the region considered, is taken large com­
pared to the quantity 11m. 

Explicit calculations give 

liP, y) = f ,(p, pi) exp [i(p - p')y] 

X o(P + pi _ p)2(PO + ,P~) ()(Po) 
2 2poPo 

x O(p2 _ m2 + :2 _ (V:)2) dp dp', (33a) 

where 

v = PIPo, 
It is also different from (BA)w in general. u = p _ p'. 

Other special cases. In the following we consider 
particular cases where gw is slowly varying in intervals As for gF, it can be written as 

of the order of some quantity Ax in x or Ap in P, or f 
both. The specific form will be gF(P,y) = ~(P,u) exp (iuy) du, (33b) 

gw(P, x) = hw(P, x) * TA (x) (32) with • 
(or similarly in P) where h is some distribution. 

We will then call Ax the position deviation (respec­
tively, Ap the momentum deviation). In fact, the 
probability of finding the particle at point Xo with an 
apparatus measuring with infinite precision at that 
point is 

W(xo) = f gw(P, x)(j(x - xo) dP dx 

= f gw(P, xo) dP 

and is thus slowly varying with Xo in an interval of the 
order of Ax . A similar argument holds for a quantity 
€w of form (30). We say here that the probability 
of detecting a particle at point Xo with rms error Bx 
and, say, momentum Po with rms error Bp is 

where 
W = [h(P, x) * TB.(P)TA"(X)](Po , xu), 

HP, u) = (1j).o)~(AoP, u), 

( 
U2 _ (VU)2)! 

Ao= 1+ , 
4m2 

~(P + pi , P _ pi) = ,(p, pi) Po + p~ . 
2 2pop~ 

To prove the result, we first obtain a slight ex­
tension of Eq. (29) for the case when Bx depends on 
the momentum. 

Limiting the proof to the case BxBp = !, one writes 
the inequality, 

o ::;; <Xol F IXo) ::;; <Xo I Xo), 

for the minimal wave packet: 

Xo(p) = (2Po)a! exp (ipxo) 
(27T)'.! 

X exp (_ ! (p - PO)2 B 2(P »)Bi(p) 
2 4 x o. '" 0, 
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which gives the general result 

J 1 [1 (P - PO)2] o ~ EW(P, x) (21T)3 exp -"2 Bp(P
o
) 

x exp [- !(X - XO)2] dP dx ~ 1. 
2 B.,(P 0) 

It is now sufficient to prove that at the approxima­
tion stated, "w can be replaced by "F' We will use the 
special choice 

B.,(Po) = B",o(1 - v~)-!. 
We consider the quantity 

NW = J [;(P, u) - ~(P, u)] exp (iuyo)B!(Po) 

x exp [-t(P - Po)2B;(Po)] 

where 
X exp [-B!(P 0)u2] dP du, 

~(P, u) = ~(p, p')[(2pi(2p~)!]-1 , 

;(P, u) = 1. ~(AoP, u) Po + pi. 
Ao 2(pop~) 

A tedious but straightforward evaluation leads to 
the result that INWI is of the order of IP(I/m2B;Bp )1 
(which is smaller than l/mBxn). 

It is obtained, by using 

Ao = 1 + (')([mB.,(Po)t2) 

Po + p~ = 1 + (')([mB.,(po)r
3) 

2(pop~)! 

P = Po + (,)(_1_ 1 ). 
[mB.,(Po)]2 [mB.,(Po)]2 B.,(Po) [mB.,(Po)]2 

Because of the exponential factor in the integrand, 
all correcting quantities are well defined. 

C. Classical Limit of Wigner-like Functions 

1. Classical Limit of the Usual Wigner Functions 

A density or an efficiency function is expected to be 
of a classical type if the probabilistic aspect due to 
insufficient data (with respect to phase space) is such 
that essentially all information on the quantum level 
is lost. 

If the correspondence between classical and S­
matrix descriptions of states which has been estab­
lished by means of density and efficiency functions is 
good, these functions should then enjoy without 
smoothing the properties required from the corre­
sponding classical functions with a good approxima­
tion. We emphasize that only a subclass of the 
classical functions will be obtained, as is physically 
the case. 

A qualitative requirement which is expected is a 
slow variation of the density or efficiency functions 

over phase-space regions of dimensions large com­
pared to unity. 

More generally, a qualitative requirement for a 
situation to be of a classical type is that some product 
I (V",f) (V pg)1 of some functions involving f and g, 
should be large compared to unity. 

In this section, we show, in some simple cases, that 
this qualitative requirement can be made precise in a 
satisfactory way. We study the case of a Wigner 
function itself, the case of a product of two Wigner 
functions, and, finally, different classical-type situa­
tions corresponding to measurements. 

Classical limit of a Wigner function. Let us first 
consider the special simple case of the density matrix 
~o defined in Eq. (27). 

1 1 
~o = (21T)3 (A~A;)3 

[ 
1 (Pop - PO)2 1 (Xop - XO)2] X exp - - --
2 A' 2 A' , 

p '" 

g (p x) __ 1_ 1 
o , - (21T)3 (A",Ap)3 

X exp [ - HP ~pPor -HX ~'" xo)} 
(

A')2 (A')2 1 ~ = 2 = 2A'A' tanh--. 
A A '" p 2A'A' 

'" p '" p 

The Wigner function go is always positive (and less 
than one), but for instance the Wigner function 
a~)w(p, x) associated with ~g is completely different 
in general from gg(P, x). 

However, if we consider a sequence of such density 
matrices such that A",Ap goes to infinity, the following 
results hold: 

A", = 1 + (') (_1_) (34a) 
A~ A",Ap , 

Ap = 1 + (') (_1_), (34b) 
A~ A",Ap 

1(~~)w(P, x) - gg(P, x)1 = (,)(_1_). (34c) 
A",Ap 

Equation (34c) is easily obtained due to the simple 
form of ~o. 

We now study the general case when the Wigner 
function is slowly varying over some phase-space 
region, with a "space deviation" A", and "momentum 
deviation" Ap. The specific form is thus 

EW(P, x) = ,u(P, x) * TAp(P}TAx(X), (35) 

where,u is some function such that "w is actually the 
Wigner function of a density or efficiency matrix. 
It is sufficient to limit ourselves to that case as we 
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consider the limit A",Ap ->- Cf) in the following. If it 
were a more general distribution,a small part of the 
convolutions would be taken out to smooth it. 

lt includes the cases already studied where fl was 
positive, but also all other possible cases. 

Owing to Eq. (29), one has, for any B"" Bp (B",Bp ~ 
i), 

OS; EW* TB.(P)TB.cX) = fl * TC.(P)TC.cX) S; 1, 

(36a) 

Cp = A{l + (~:rr, 
C", = Ax[ 1 + (~:)r· 

If we consider a sequence of Wigner functions 

such that AvA", goes to infinity, and flAp,A. is a set of 
uniformly bounded functions, it is easily shown that 

I(EW)A A (P, x) - (EW)A A * TB (P)TB (x)1 
p, x 1" x '11 a; 

= t)«A",Ap)-I), (36b) 
with 

Bx = AxCAxAp)-t, 

Bp = Ap(A",Ap)-t, 

Equation (36b), together with Eq. (36a), proves that, 
actually for large A",A p, the Wigner function lOW 

becomes positive and less than unity. (It is always a 
Ceo function, because of the convolutions.) 

Two special limit cases can be mentioned, namely, 
cases when the Wigner function only depends on the 
position or the momentum variables, corresponding 
to measurement apparatus only detecting position or 
momentum. 

The special form of the efficiency matrix F is such 
that 

or 

FW(p, pi) = A(Hp + pi», 

EW(P, x) = A(P), 

FW(p, pi) = B(p - pi), 

EW(P, x) = B(x), 

where B is the Fourier transform of B. 

(37) 

(38) 

In both cases, the condition 0 S; F S; 1 is equiv­
alent to 0 S; lOW S; 1. 

The property corresponding to Eq. (34b) in the 
general case will be a special case of the general result 
which will be obtained now. 

Classical character with respect to each other of two 
Wigner functions, We consider here the Wigner 
function (F1F2)w(P, x) associated with the product 

FIF2 of two density or efficiency matrices F1 , F2, the 
Wigner function of each EW,I' EW,2 having the form 
given in Eq. (35), in general with different quantities 
Ap,l, A""l, and Ap,2' A",,2: 

We will then show that, for large products Ap lA", 2 

and Ap,2A""I, the product of the Wigner function's 
EW,l(P, x) EW,2(P, x) becomes equal with a good 
approximation to the Wigner function (F1F2)w(P, x). 
The result holds even if the Wigner functions 10 W,l and 
EW,2 are not themselves of a classical type. We will 
say, generally speaking, that the two Wigner functions 
are formally of a classical type with respect to each 
other. 

We assumed that fll and fl2 are uniformly bounded 
functions. 

In fact, one has 

A straightforward calculation gives 

X exp [_ !(X - XI)2 1 ] 
2 A X • I 1 + K~2 

X exp [_ !(X - X2)2 1 ] 
2 A",,2 1 + K~l 

X exp [_ !(P - P2)2 1 ] 
2 Ap,2 1 + K~l 

X exp 1--- -----=--[,(P2 - Px - Xl K2I 

A p ,2 Ax,l 1 + K~I 
+ K12 2 P - PI X - X2)], 

1 + KI2 Ap,l A",,2 
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where 
K12 = 1/Ap ,lA",,2' 

K21 = 1/Ap ,2A",,1' 

Due to the above hypotheses, the result announced 
above holds in the following form: 

I (F1F2)w(P, x) - €W,l(P, X)€W,2(P, x)1 
= 0 (K12 ,K21). (40) 

We have thus been able until now to study the case 
of classical-type Wigner functions and of two Wigner 
functions formally of a classical type with respect to 
each other. We deal now with measurement processes, 
as a first simple example. 

We have given a precise characterization in the 
form of Eq. (35). A question is to what extent is it 
possible to generalize it. In the same line of thought 
as above, generalizations can be made by allowing 
Ap , A", to depend on phase-space points. The momen­
tum dependence can be easily given. A complete 
phase-space dependence is not quite easy, and not very 
useful (some more conditions on the variations of 
A p , A", as functions of P and x have to be given). 

More generally, it is possible to write formally 
different "expansions of the Wigner functions in 
powers of h." What is sometimes stated as "taking the 
limit Ii = 0" means in our formulation that terms of 
the kind [(V",f) (V pg)]-l would be assumed to be small 
enough to be negligible. 

However, if it is formally possible, we do not know 
how to specify, in general, how the limit is obtained. 

The characterization given in our text seems 
"physically reasonable." 

Classical type formulas for measurements results. 
The general formula for a measurement result has been 
written in Eq. (30). We note that it is already a 
formally classical-type formula. 

Cases for which we get classical-type formulas are 
all those for which the Wigner functions involved are 
actually positive (and less than one) or are of a classi­
cal type. 

A simple example of another possible classical-type 
situation is exhibited as follows: assume thatgw(P, x) 
is negligible outside a sphere of diameter D and center 
Pa and that €w(P, x) is slowly varying in an interval 
of the order of D in the variable P. Different kinds of 
hypotheses can make the following rigorous. 

An approximation for the quantity Tr ,F will be 

Tr ~F = J gw(P, x)€w(P, x) dP dx 

R:::! J gwarS(x)€W(Pa, x) dx 

= J gwarS(x)t5(P - Pa)€w(P, x) dP dx, (41) 

where 

gu~rg(x) = J gw(P, x) dP. 

The particle state measured is thus represented by 
the function g;rg(x)t5(P - Pa), which satisfies the 
property required from a classical probability density, 
and if €w(P, x) is itself of a classical type, we have a 
classical-type situation, even if for instance the func­
tion gw is far from being of a classical type by itself. 

As a usual simple case, we assume the particle 
state is a pure one, corresponding to a wavefunction 
rp(p) vanishing outside a sphere of diameter D and 
center Pa • The function gw is just the opposite of a 
classical-type function. 

2. Classical Limit of the Invariant Density or 
Efficiency Functions 

The same kind of results will be obtained in this 
section for the invariant functions under some new 
hypotheses. 

We will consider a sequence of invariant functions 
with a "space deviation" A",(P): 

~(P, u) = XAx(P, u) exp [_A",(P)2U2], 

A.,(P) = A""o(1 - V2)-!. (42) 

The sequence is such that llmA""o goes to zero and 
the set {xA) is, for instance, a set of uniformly 
bounded functions. 

A first result concerns the quantities j I and j F' Once 
smeared out in the variable Po with test functions 
slowly varying in intervals of the order of (lIA",) X 

(llmA""o), they are equal to a good approximation; 
i.e., 

J UiP, x) - jF(P, x)]rp(Po) dPo 

= o (m:",)2 sup IVllxl, (P;",)2 sup Irp~ol). (43) 

The physical meaning is that jz and jp are equiv­
alent under most usual phenomenological situations. 

If we are now interested in the functions g F, € F 

[associated with kernels of the form of Eq. (42)], the 
results obtained in Sec. 1I1.C.l using gw, €w are valid 
using gF, €F with a good approximation. In fact, 
along similar lines· as in Sec. III.B.2, gF and gw 
(respectively, €F and €w) can be shown to he equiv­
alent to a good approximation. 

A classical-type invariant function is thus charac­
terized in the following way: it is slowly varying in 
phase-space regions, the dimensions of which are 
large compared to unity, and furthermore with a 
space diameter large compared to 11m. 
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In the same way, if we consider a measurement 
process and if the particle measured has its state 
defined by a density matrix of the form ofEq. (42) with 
Ax,o large compared to 11m, we obtain, here too, a 
formally classical-type situation. 

Classical-type situations are easily deduced along 
the same lines as in Sec. III.C.l. 

IV. SINGLE SCATTERING 

We begin the comparison of S-matrix results and 
classical formulas by the simplest case of a single 
scattering A + B --l> Al + B I • 

The states of particles A, B are defined through the 
density matrices 'a(P, p'), 'b(q, q'), the final states of 
particles AI, BI through the efficiency matrices 
Fa(P I , p~), Fb(ql' q~). 

The transition probability is 

W = f ,:(p, p')':( q, q')F iPI' pDF b( ql , qD 

x T*(p', q', p~, qDT(p, q, PI' ql) 

x dp dp' dq dq' dpi dp{ dql dq{ (44) 

2po 2p~ 2qo 2q~ 2PIO 2p~o 2qlO 2q~0 ' 

where the T-matrix elements can be written as 

The following hypotheses, which could be weakened, 
are made. On one hand, the t-matrix elements will be 
assumed to be C2 functions, bounded as well as their 
first two derivatives. On the other hand, the density 
and efficiency matrices will have the form given in 
Eq. (42). They are also such that the velocities cannot 
be equal all together. 

We also generally assume-although it is not neces~ 
sary in all cases-that the kernels ,(p, p') = ~(P, u) 
or F(PI, p~) = P(Pl , u1) (for all initial and final 
particles) are Ceo functions in all variables. The CX> 
character in P corresponds to the usual smoothness 
of the Wigner functions. The Coo character in U 

corresponds to a rapid decrease in space of the Wigner 
functions. 

We now use the results of Eg. (35) and the following 
development of the product t(p, q, PI, ql)t*(P', q', 
p~ ,qD to the first order in the variables p - p', 
q - q', PI - p~, qi - q~: 

t*(P - tu, Q - tv, PI - tul , Ql - tvl ) 

x t(P + tu, Q + tv, PI + tul , Ql + tv]) 
= It(P, Q, p], Ql)1 2 

X exp (iu . V pO + vV QO + UIV PlO + v]V QIO) 

+ second order, (45) 

where P = Hp + p'), U = p - p','" , and where () 
is the phase of t. 

It is interesting to note that the derivative of the 
modulus It I does not appear in this first-order develop­
ment. 

A. Coarse-Grained-Type Formula 

By keeping only the first-order term, we obtain the 
following approximation of the transition probabil­
ity-we do not specify the order of error14 : 

W ~ fJ~>(p, x - :0 Xo + VpO) 

X jjb) ( Q, x - ~o Xo + V QO ) 

x £ja> (PI , x - .!i. Xo + V PlO) 
PlO 

x £jb>(Ql' X - Ql Xo + V QlO) 
QlO 

x (27T)-4It(P, Q, PI' Ql)1 2 

X o(P + Q - PI - Ql) dP dQ dP I dQl dx. 

(46) 

In this expression, the quantities h, E[ can be 
replaced by the corresponding quantities h, E F at the 
limit of small (mA""o)-1 (for all particles). 

It gives the following approximation: 

W ~ f gj?>(p, x - :/0 + VpO) 

x g~)(Q, x - ~o Xo + VQO) 

X €j?>(p] , x - PI Xo + vPlo) 
PlO 

X €~)(Ql' X - QI Xo + VOlO) 
QI0 

x (27T)-4 It(P, Q, p] , Ql)12 

X o(P + Q - PI - Ql) dP 'iQ. tlPl dQI d4x, 
2Po 2Qo 2PlO 2QlO 

(47) 
where Po = (P2 + m2)~, etc. 

In formula (47) we note that we do not have in the 
integrand a product of the functionsj, E at the same 
point x, but that each one appears with some displace­
ment. 

14 M. Froissart, M. L. Goldberger, K. M. Watson, Phys. Rev. 131, 
2820 (1963). 
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As a matter of fact, there are three relative space­

time displacements T ba , Ta,a' Tb,a' satisfying 

Q 
Tba - Qo TO,ba = V Qf} - V l'f}, 

Tala - pPl 
TO,a,a = V1"S - Vi'S, (48) 

10 

Tb a - QI TO bit = VQ 6 - V l ,6. 
1 QlO' 1 , 

In the usual case, when the t-matrix elements are 
functions of two invariants only, there are only two 
independent scalar parameters. 

The interaction is coarsely localized in some "space­
time grain," the dimensions of which are given by 
considering the quantities T. 

B. Local-Type Scattering 

If the dimension of the grains is negligible compared 
to the "space deviations" Ax of the particles involved, 
we get the following local-type formula: 

W R> Jj~)(P, x)j~)(Q, x)E~~)(PI' x)E~)(QI' x) 

X (27T)-4It(P, Q, PI' QI)1 2 

X b(P + Q - PI - QI) dP dQ elPI dQl d4x. 

(49) 

The product of the functions j, E appears now at 
the same point x. 

The approximation is valid if the t-matrix elements 
are slowly varying in intervals of the order of A;I, 
The error is of the order of (mAx,o)-l, so that 

I 
VRt(l - Vh)! I 

sUPR~P,Q,Pl,Q, tAx,o . 

In order to compare S-matrix and classical formulas, 
we are first going to write down the usual phenom­
enological formula for classical local scattering, 

1. Classical Formula for Local Scattering 

The usual formula used by the experimentalists is 
as follows: if we define particles A, B by the proba­
bility densitiesja(P, X),jb(Q, x) and the measurement 
apparatus of particles AI' BI by the efficiencies 
Ea(PI , x), Eb(QI' x), assuming furthermore the 
locality of the interaction, the phenomenological 
energy-momentum conservation and considering a 
phenomenological probability function lI'(P, Q, PI' 
QI), we get: 

W = ffa)(p, X)/b)(Q, X)E(a)(PI, X)E(b)(QI, x) 

X W(P, Q, PI' Ql) 

X (bP + Q - PI - QI) dP dQ dPI dQI dx. 
(50) 

We have not developed here a complete classical 
formalism. The phenomenological formula written 
here is valid for functions g and E smooth enough and' 
with sufficiently slow variation. These conditions are 
usually satisfied when the classical description is 
good. 

The effective cross section is 

O'E(P, Q, x) 

= [HPQ)2 - (ma mb)2r! 

X J E(a\PI , X)E(b\QI' x)w(P, Q, PI' QI) 

X O(P + Q - PI - QI) dPI dQIlpo~(p2+m 2)t. 
Qg~(Q2+m:2)t 

(51) 

By using the effective cross section, the formula for 
the transition probability is, in fact, 

W -J '(a)(p ) .(b)(Q ) [(PQ)2 - (ma mb)2]! 
- Jo ,x Jo ,x 

PoQo 

X O'}ilP, Q, x) dP dQ dx. (52) 

This formula is a sophisticated expression of the 
usual rule W = nIn2vO'. If Q = 0, then 

[(PQ)2 _ (mamb)2]! IPI 
=-=V. 

PoQo Po 

2. S-Matrix a~d ClaSSical-Type Formulas 

Equation (47) is already formally ofa classical type, 
as is easily seen by comparing it to Eq. (49). 

If the density and efficiency functions involved are 
themselves of a classical type, the functions (27T)-;~/~), 
(27T )-3fJ.) can be replaced by functions having the 
properties of classical probability densities, and E~~), 
Ejp by functions having the properties of classical 
measurement efficiencies. 

Adopting, furthermore, the correspondence 

lI'(P, Q, PI' QI) = (27TFlt(P, Q, PI' QI)1 2
, (53) 

we obtain a classical-type formula for the transition 
probability. 

Other classical-type situations can be exhibited. 
In the same line of thought as in Sec. TII.C.l for 

studying measurement processes, we give an example 
here of such a situation. 

In the same way as in the classical case let us define 

O'p(P, Q, x) 

= [H(PQ)2 - (mambn-} 

X f EY;;>(PI , x)E~~)(QI' X)(27T)2 It(P, Q, PI' QI)1 2 

X o(P + Q - PI - QI) dPI dQllpo~(p2+ma2)t, 
Qo~(Q2+mb2)! 
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which yields 

W ~ f g~) ( P, x - :0 xo) 

X g<j,)( Q, x - ~o XO)O'F(P, Q, x) 

! dP dQ 4 
X 4[(pQ)2 - (mamb)2] 2P

o 
2Qo d x. (54) 

If we assume that g(a) and g~) are negligible outside 
F . 

spheres of diameter D and centers Pa , Qb in the varI-
ables P, Q and that [(PQ)2 - (mamb)2]tO'F is slowly 
varying in P, Q in an interval of the order of D, it is 
possible to obtain the following approximation: 

where 

W ~ fj~~rg(X)j;;;~rix)i1Pa'Qb(X) d4
x, (55) 

j '(a) (x) =fg(a) (p X _ ~ x) dP 
marg F , Po 0 2P 0 ' 

j'(b) (x) =fg(b)(Q x _ Q x )dQ 
marg F, Qo 0 2Qo' 

ap Q (x) = {4[(P, Q)2 - (m a , mb)2]!O'F(P, Q, x) }P=P a' 
a, , Q=Qb 

We also assume that the kernels of the density 
matrices are Coo functions of the form of Eq. (42) . The 
Coo character implies that the functions gF are rapidly 
decreasing as functions of y p = x - (P/Po)xo, y Q = 
X - (Q/Qo)xo' If they are assumed to be negligible 
outside spheres of dimension d and if the velocities of 
the two particles cannot be equal [I(P/Po) - (QIQo)1 
is of the order of one], the productgW)(p, yp)glJ;)(Q, y Q) 
is then negligible outside a sphere of dimension d in all 
directions of space-time, in particular for IXol larger 
than d. 

Assuming a condition of the type 

dD (resp dD)« 1, 
PoA", QoA", 

we obtain the approximation 

where 

W ~ J g~!rg(X - :0 xo)b(P - Pa) 

X g;;;~rg(X - ~o xO)O(Q - Qa) 

x a(P, Q, x) d4x dP dQ, (56) 

(a) ( Pa ) J (a) (p Pa ) dP gmarg X - - Xo = gF , X - - xo -, 
Pa,o Pa,o 2Po 

(b) ( Qb) f (b)(Q Qb )dQ 
gmarg X - - xo = g F , X - - xo -. 

Qb,O Qb.O 2Qo 

The functions g:::~rg , g:::~rg can be replaced by posi­
tive functions at the approximation (mA""o)-l « 1. 

Thus if, for instance, the efficiency functions are of 
a classical type, we obtain here too a classical-type 
formula, even for density functions which are far from 
being themselves of a classical type. 

The same comments can be made as in the case of 
the measurement processes studied in Sec. III.C.1. 

C. Other Possible Situations 

We end this part with the following remark: We 
have studied until now S-matrix results under special 
conditions of slow variation of the t-matrix elements, 
which allowed us to obtain coarse-grained-type or 
local-type formulas. 

If these conditions are not satisfied, we may obtain 
very different results. For instance, if the t-matrix 
elements have some polelike behavior, this situation 
can correspond in some cases to a physical process 
of creation of an intermediate propagating unstable 
particle in the scattering A + B -+ M, followed by the 
decay of Minto partides Ai, BI . 

Such a case is similar to what is studied in the next 
part, to which we refer. 

V. MULTIPLE SCATTERING 

In Sec. V, our aim is to show directly how it is 
possible to obtain the usual classical type formulas 
for different situations of multiple scattering. 

In Sec. V.A a polelike behavior of the connected 
matrix elements is assumed in a weak form. A general 
formula is obtained and we show how it leads under 
various conditions either to the usual bump in the 
cross sections (e.g., N*) or to a formula for successive 
scatterings with the propagation of a real intermediate 
stable or unstable particle (e.g., neutron) or to 
intermediate cases, where only a one-mass-shell 
kinematical condition for the "intermediate" particle 
is expressed (e.g., ~O). 

In Sec. V.B, a simple case of Landau-type behavior 
of the connected matrix elements is exhibited as an 
example, and it is shown how it can correspond to a 
physical process of successive and multiple scatterings. 

As we are interested in successive interactions which 
can be separated by macroscopic distances, a param­
eter p corresponding to the separation is explicitly 
introduced. 

A. Double Scattering 

Let us consider the scattering A + B + C ->- Al + 
Bl + Cl' 

The states of particles A, B, C are defined through 
the density-matrix kernels C(p, p'), ~b(q, q'), Ur, r'), 
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the final states of particles AI' BI , CI through the 
efficiency-matrix kernels FaCPI ,p~), Fb( qi ,q~), FCCrl ,r~). 

The transition probability is 

W = f ,:(p, p')'tCq, q')':Cr, r') 

X FaCPI' P{)FbCqu qDFcCrl' r~) 
T( )T*( I I I I I ') X p, q, r, PI' ql' rl p, q , r , PI, ql' rl 

dp dp' dpl dp{ 
X 1T-1T-1T-1T-

2po 2p~ 2PlO 2p~0' 
where 

dp dp dq dr 
1T- = ---, etc. 

2po 2po 2qo 2ro 

The T-matrix elements can be written as 

T(p, q, r, PI' ql' rl) 

= I(p, q, r, PI' ql' rl)b(p + q + r - PI - qi - rl)· 

Along the lines of Sec. ILD, the I-matrix elements 
are now written as 

t(p q r p q r) = .;\{,(p, q, r, PI, ql, rl) (57) 
, , , 1, 1, 1 k2 2 • ' 

- m + lY 

where k = P + q - PI and where y is zero for a stable 
particle. 

The .;\{,-matrix elements are assumed to be C1 
functions at least. Furthermore, some hypothesis 
about their variation is made to make formula (57) 
meaningful when y ~ 0: The .;\{,-matrix elements are 
assumed to be slowly varying in an interval of the 
order of Ylko in each variable, the kinematic (and 
other) conditions being such that ko is positive and 
bounded below. In particular, it will be slowly varying 
as a function of k 2 in an interval of the order of y (for 
Iklkol of the order of or smaller than unity). 

If, as usually assumed, .;\{, is function of the in­
variants only, such that 

A 

.;\{,(p, q, r, PI' ql' rl) = .At,(k2 , ••• ), 

it is enough to assume that the function .M, is slowly 
varying in k 2 in an interval of the order of y. 

1. General Formulas 

For the sake of simplicity, we do not consider 
coarse-grained-type formulas for each individual 
scattering. 

Assuming that the function .At, is slowly varying 
over intervals of the order of A;l in all variables-the 
density and efficiency functions are assumed to have 
"space deviations" Ax-we obtain the following 
approximation for the transition probability (for 

particles C, B, Cl translated through a vector p)­
with an error of the order of IV.M./.;\{,Axl: 

W(p) ~ f ,:(p, p'g:(q, q'g:(r, r') 

X Fa(Pl' p{)Fb(ql' qDFc(rl' rD 

X b(P ~ pi _ P )t5(q ~ q' _ Q) 

x b(r ~ r' - R)b(PI ~ p{ - PI) 

X b(ql ~ q{ - Ql)bri ~ r{ - RI) 

X b(p - pi + q - q{ - (PI - p{) - 1) 

X b(l + r - r' - (ql - qD - (rl - r{» 

dp dp' dpl dp{ 
X 1T-1T-1T-1T-

2po 2p~ 2PI0 2p~0 

X I.;\{,(P, Q, R, PI' Ql, RI)1 2 

X b(P + Q - PI - K)b(K + R - QI - R I) 

X dP dQ dR dPI dQI dR I 

1 
X ---------------

(K + 1/2)2 - m2 + iy 

X / 2 exp (-ilp) dK dl. 
(K - 1/2) - m - iy 

(58) 

This formula may be written as follows: 

W(p) ~ fjjal(p, x)j~I(Q, x) 

X E~I(PI' X)Ejbl(QI' y)EiC\R I , y)jjcl(R, y) 

x (21T)-8 I.;\{,(P, Q, R, PI' Ql' R1)1 2 

X b(P + Q - PI - K)b(K + R - Ql - R1) 

x ,])(K, y - x + p) 

x dP dQ dR dP I dQl dR I dK dx dy. (59) 

A "generalized propagator" '])(K, x) has been intro­
duced, such that 

:D(K, x) =fexp ( - ilx) 1 
(K + 1/2)2 - m2 + iy 

1 
x 2 2 dl. (60) 

(K - 1/2) - m - iy 

It may be written by using the causal Green's 
function as: 

:D(K, x) = [DC(2x) exp (-2iKx)] 

* [DO( -2x) exp (2iKx)], 

DO(x) = -(21T)-4J exp (ikx)(k2 
- m2 + iy)-l dk. 
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However, we are not interested in this general case 
and we do consider the u~ual conditions, when A""o is 
large compared to the inverse of all the masses of the 
particles involved. This allows one to replace the func­
tions h, E I by the functions h, E F • 

Furthermore, a new important approximation is as 
follows. For convenience, we write Eq. (58) in the 
form 

W ~ f F(K, I) K2 + 12/4 + ~2 + Kl + iy 

X 1 dK dl, (61) 
K2 + [2/4 - m2 

- KI - iy 

where the function F is obtained by integrating the 
right-hand side of Eq. (58) on all variables except K, I. 

F or kernels of density and efficiency matrices of the 
form of Eq. (43), the function F(K, I) is thus slowly 
varying in K(K, Ko) over intervals of the order of Ap 
and is, on the contrary, exponentially decreasing in 
the variable 1(1,/0), i.e.; it is negligible for 1/01, III large 
compared to A;l. 

Owing to that behavior, we can show that it is 
possible, to a good approximation, to replace K2 + 
[2/4 in both propagators by K2. In fact, let us consider 
the following quantities: 

W =fF(K, 1) 1 
K2 + 12/4 - m2 + KI + iy 

X 1 dK dl, 
K2 + 12/4 - m2 

- KI - iy 

W' =fF(K, I) 1 
K2 - m2 + KI + iy 

1 
X 2 2 dK dl. 

K - m - Kl- iy 
Defining 

F (K I) = F(K, l) 
1, 2(K~ - n) 

= £iK2 + 12/4 - m2, K, KI, I), 

F (K I) = F(K, 1) = P (K2 - m2 K Kl I)· 
2, 2K~ 2 , , " 

we get 

W - W' = f [E~(s, K, t, I) - £2(S, K, t, I)] 

x 1 1 ds dK dt dl. 
s + t + iy s - t - iy 

From the result, it can be actuaJly shown that 
W - W' is negligible with (KoA",)-l. 

In that way we obtain a new approximation for 
W(p), where the function 1>(K, x) in Eq. (59) is re-

placed by 

1>(K, x) =fexp (ilx) 2 2 1 . 
K - m + KI + II' 

1 x 2 dt. (62) 
K2 - m - Kl- iy 

A straightforward calculation gives (for Ko > 0): 

~(K, x) = (27T)4 b(X _ .!. xo)O(xo) exp (_ yxo) 
Ko Ko Ko 

X exp (i(K2 - m2)u) du. (63) J
"'O/2KO 

-"'o/2Ko 

The final formula we get is thus 

W(p) ~ fj~)(p, x)j~)(Q, x) 

X E~)(PI' x)j~)(RI' y)Ej;\')(QI' y)Eji)(RI , y) 

(27T)-8 2 
X --I.AL(P, Q, R, PI, QI' R1)/ . 

Ko 

X b(P + Q - PI - K)b(K + R - QI - RI) 

X 1>(K, y - x + p) 

X dP dQ dR dPI dQI dRI dK dx dy. (64) 

A 

The function 1> already contains the factor 

which has formally the fontl of a classical factor 
corresponding to the propagation of an unstable (or 
stable for I' = 0) particle after its creation [the factor 
O(xo) accounting thus for causality]. However, the 
mass-shell condition does not obtain in general. 

We are now going to show how Eq. (64) leads to the 
usual classical-type formulas. 

2. Observation of a Resonance 

Let us now assume the following condition: 

L»~. 
Ko A", 

(65) 

Because of the presence of the damping exponential 
exp (-yzo/Ko) in Eq. (64), the main contribution to 
the integrand is obtained for IZol «A", (where Z = 
Y - x + p). A similar condition holds for JzJ due to 
the factor b(z - (K/Ko)zol. 

We thus limit ourselves to the case p = 0 as there is 
no point in considering large values of p. 

Looking at Eq. (58), it is now possible to neglect 
Kl as compared to I' in both denominators K2 - m2 + 
KI + iI', K2 - m2 - Kl - iy and to obtain, with an 
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error of the order of Ko/(yA.,), the following approxi­
mation: 

W f .(a)(p ) .(b)(Q ) ,(c)(R ) 
~ JF ,x JF ,x JF ,x 

X E~)(PI' x)E~)(QI' x)E~\RI' x) 

X (~:4 o(P + Q - PI - K) 

X o(K + R - QI - R I ) 

IJI(,(P, Q, R, PI' QI' RI)1 2 

X -'---'--'--=--'--=----"-=c-__=.;...;... 

(K2 _ m2)2 + y2 

X dP dQ dR dPI dQI dR I dK dx, (66) 

where we recall that JI(, is slowly varying in K2 in an 
interval of the order of y. 

In that special case, it would be more suitable to 
obtain this formula directly from Eq. (58). 

It is formally a classical-type formula for a local 
scattering with a bump in the cross sections. As a 
matter of fact, it is difficult to have an interaction 
between three joined particles and the corresponding 
formula is more usual for the case of two initial inter­
acting particles. 

3. On Mass-Shell Kinematical Condition for the 
"Intermediate" Particle 

A particularly interesting case is usual and corre­
sponds to the condition stronger than condition (65), 
so that 

(67) 

If we consider Eq. (66) in the limit when y/Ko is 
small compared to A p , it is possible to replace the 
factor 

1 Y 1 2 2 
by -o(K - m). 

y (K2 _ m2)2 + y2 Y 

In fact, in this case, it is phenomenologically 
neither possible to see a bump corresponding to a 
resonance nor to see an intermediate propagating 
particle, but only to observe the on-mass-shell kine­
matical condition (P + Q - P I )2 = m2• 

Here too, the case of two initial particles is more 
usual. Experimentally, if one still wants to speak of an 
"intermediate" particle with a lifetime T or a resonance 
width, one can only deduce that the following inequal­
ity holds: 

It is the case for the measurement of the ~o lifetime: 

4. Propagation of an Intermediate Real Particle 

We aim in that section to study the case of a classical­
type formula corresponding to an actual propagation 
of a real intermediate particle between two successive 
scatterings. 

Particle C will then be assumed to be away from 
particles A, B at time zero. In practice, the following 
conditions will hold. The density and efficiency matrix 
kernels will be Coo functions. As already stated in Sec. 
IV.B, the product g~)(P, x - (P/Po)xo)g<j.) (Q, x -
(Q/Qo)xo) is then rapidly decreasing in all space-time 
directions, for different velocities of A and B. If it is 
assumed to be negligible for lxi, Ixollarger than some 
quantity d (d ~ A.,), the first interaction is then 
localized in this region. 

The product 

g~)(R, y - :/o)E~)( Q1, y - ~:o yo) . 

X E~)(R1' Y - :110 yo) 

is also assumed to be negligible for Iyl, IYol larger 
than d. 

To say that particle C is away from A and B at time 
zero means that IPol will be taken large compared 
to d. Owing to the damping exponential factor 
exp (-yzoIKo) (z = Y - x + p, IZol ,....., IPol), we have 
to assume, similarly, in order to obtain a non­
negligible transition probability, that 

(y/Ko) IPol ~ 1, y/Ko« I/A.,. (68) 

Condition (68) is just opposite to the condition 
expressed in Sec. V.A.2. 

We also note, as expected, that the transition proba­
bility is rapidly decreasing with Po, for Po negative, 
and is negligible for - Po larger than d, due to the 
causality factor (j(zo) in formula (64). 

Assuming Po > 0 and condition (68), we consider in 
the right-hand side of Eq. (64) the factor 

f
ZO/2KO 

exp [i(K2 - m2)u] du, 
-zo/2K 0 

where 
Zo = Yo - Xo + Po, Zo >'0. 

For Po large compared to d, it is possible to use the 
following approximation: 

exp [i(K2 - m2)u] du "" 2m5(K2 - m 2), (69) f
zo/2KO 

-zo/2Ko 

which can be justified because of the smoothness with 
respect to momentum variables of all the functions 
involved in Eq. (64). 
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The following formula is obtained: 

W ~ fj~)(p, x)j~~)(Q, x) 

x E~)(PI' x)j<;'\R, y)E<J,)(QI' y)E<;')(R I , y) 

x b(Y - x + p - :0 (Yo - Xo + po») 

x 8(yo - Xo + Po) exp [ - Y(Yo -:: + po)] 

x 1.At,(P, Q, R, PI' QI' R1)1 2 

X r5(P + Q - PI - K)r5(K + R - QI - RI) 

X ~~3 r5(K2 _ m2)8(Ko) 

x dP dQ dR dPI dQl dR I dx dy dK. (70) 

For the case when y = 0, the usual factorization 
property of .At, is assumed: 

.At,(P, Q, R, PI, QI' RI)IKo~(K2+m2)! 
1 = - t(P, Q, PI, K)t(K, R, QI, RI)· (71) 

21T 

For the case of an unstable particle, it is still 
assumed that, at least with a good approximation, a 
factorization property also holds: 

.At,(P, Q, R, PI' QI' Rl)IKo=(K2+m2)~ 
1 

~ - .At,ICP, Q, P I).At,2(R, QI, RI)' (72) 
21T 

Classical formula. Along the lines of Sec. II.D, we 
write now the usual classical phenomenological for­
mula corresponding to two successive scatterings. 

The first scattering A + B ~ Al + M is considered 
and the current intensity of the intermediate particle 
M is written as 

jJnt(K, y) = _1_ b(K2 - m2)8(Ko) 
2Ko 

x fja(p, X)jbCQ, x)Ea(PI , x) 

X b[y - x - (K/Ko)(Yo - xo)]6(yo - xo) 

X exp {-[Y(Yo - xO)]fKO}WI(P, Q, PI' K) 

x o(P + Q - PI - K) dP dQ dPI dx. 

(73) 

We have used the hypothesis of locality of the 
first interaction, and the fact that after its creation we 
deal with a propagating particle of mass m (which 
may be unstable). 

We also note that the quantity 

Ij?nt(K, y) dK dy 

depends now on the time yo. If the product 

ja(P, x)h(Q, x)Ea(PI , x) 

is negligible for lxi, if IXol is larger than some quantity 
d, and if Yo is positive and large compared to d, the 
following approximation can be used: 

jint(K, Y)yo»d 

~ _1_ r5(K2 _ m2)e(Ko) exp (_ yYo) 
2Ko Ko 

x IUp, X)jb(Q, x)Ea(PI , x) 

x b(y - x - (K/Ko)(Yo - xo»w1(P, Q, PI' K) 

x o(P + Q - PI - K) dP dQ dPI dx 

(74a) 

with 

fj;~t(K, y) dK dy 

= jja(P, X)jb(Q, x)EaCPI , x) 

X b(K2 - m2)e(Ko)w l (P, Q, PI, K) 

x o(P + Q - PI - K) dP dQ dPI dx = WI' 

(74b) 

where O(K2 - m2)8(Ko) is the efficiency of an appa­
ratus measuring all possible states of the particle M. 

We consider now the second scattering 

M+ C~BI + CI , 

and we obtain the transition probability of the whole 
process: 

W(p) = fjaCp, x)MQ, x)EaCPI , x) 

x joCR, y)Eb(QI, y)EcCRI' y) 

X My - x + P - (K/ Ko)(Yo - Xo + Po)] 

x 8(yo - Xo + Po) 

X exp { - [y(yo - Xo + Po)]/ Ko} 

x o(P + Q - PI - K)b(K + R - QI - R1) 

x wl(P, Q, PI' K)w2(K, R, QI, RI)t5(K2 - m2
) 

1 
x 8(Ko) - dP dQ dR dPI dQI dRI dK dx dy. 

2Ko 
(75) 

It is easy now to see how formulas of this type are 
obtained in S-matrix theory. In fact, by replacing in 
formula (70), (21T)-3i;)(b) (c) by j(a)(b)(c) , E}7)(b)(C) by 

E(a)(b)(c)' 1.At,(P, Q, R, PI, QI' RI)12 by 

(21T)-6WI(P, Q, PI, K)w2(K, R, QI' R1), 

formula (75) is (formally) obtained. 
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Classical-type situations can be studied along 
similar lines as in Sec. IV. 

Special cases. If we consider W(p), it can be 
written as 

W(p) = f w(p, K) dK, 

where w(p, K) is obtained by integrating over all 
variables except K in the right-hand side of Eq. (70). 

We then note that w(p, K) is negligible for Ip -
(K/Ko)Pol larger than d. The kinematic conditions 
may determine a region for K outside of which 
w(p, K) is negligible. If the quantity Ip - (K/Ko)Pol is 
larger than d over all that region, W(p) is still negli­
gible. 

B. Multiple Scattering 

We consider now the general case of a Landau-type 
behavior of the I-matrix elements (in the physical 
region). We treat as an example the case of a scattering 
A + B + C -+ Al + BI + C1 , assuming the follow­
ing hypothesis on the I-matrix elements: 

t(p, q, f, PI' ql' fl) 

=f .A(,(p, q, f, PI' ql, fl' kt, k2' k3) 
D1(kl) D2(k2) D3(k3) 

X b(p + q - kl - k2) 

X b(PI + ql - kl - k3) dkl dk2 dk3, (76) 

where .A(, is a CI function satisfying, furthermore, 

.At(p, q, f, PI, ql' fl' kl' k2' k3)lk12~m;2 

= (27T)-3 t(p, q, kl' k 2)t(kl , k3' PI' ql)t(k2, f, fl' k3), 

(77) 
and where 

pA 

qB 

rc I-------Cl 'I 

FIG. 1. The unitarity graph. 

These hypotheses guarantee that I has the singularity 
corresponding to the unitarity graph (Fig. 1). 

We note that .A(, is not uniquely determined and 
can always be chosen with a compact support around 
the points k 2 = m2

• In fact, it is sufficient to consider , '" 
any CI function .A(, with a compact support around 
these points and satisfying property (77) and a CI 
function CP(kl' k2' ka) satisfying the same condition of 
support and furthermore 

f q;(kl' k2' k3)b(p + q - kl - k2) 

X b(PI + ql - kl - k3) dkl dk2 dka = 1, 

for p, q, PI, ql defined by the kinematics. We then 
define 

.A(, = .At + q;(kl' k2' k3) II (k~ - m;) 
i=1,2,3 

X [t -f .At b(p + q - kl - k2) 

DID2Da 

X b(PI + ql - kl - k3) dkl dk2 dka} 

Particles C, C1 will 6e taken away with a 4-vector 
p; particles AI, BI with a 4-vector a. 

Using expression (76) and assuming that the func­
tion .A(, can be chosen to be slowly varying in intervals 
of the order of A;l, where A", is the "space deviation" 
of all density and efficiency functions involved, the 
following approximation will hold: 

W(p, a) = f ,:(p, p')'~(q, q')'~(r, f')FaCPI' pDFb(ql, qDFcCrl' rD 

X b(P ~ p' - P)b(q ~ q' - Q )b(r ~ r' - R )b(Pl; p{ - P1)b(qt; q{ - Ql)bCl: r{ - Rl) 

X b(P + Q - KI - K2)b(KI + K3 - PI - QI)b(R + K2 - K3 - R1) 

X b(p - pi + q - q' - II - 12)b(lt + 13 - (PI - pD - (qt - q{»b(r - r' + 12 - (rl - rD - 13) 

X I.A(,(P, Q, R, PI, Ql' R1, K 1 , K2, K3)12. IT D; (Ki + ~) Di* (Ki - ~) 
'~1,2,3 2 2 

X exp {ip[r - r' - (rl - r{)]} exp {ia[ql - q{ + PI - p{)]} 

dp dp' dpl dp{ 
X 7T - 7T -, 7T - 7T -, dP dQ dR dPI dQl dR I IT dKi dli . 

2po 2po 2PIO 2PlO i~I,2.3 
(78) 
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Along the same lines as in Sec. V.A, we use 

~(p - p' + q - q' - 11 - 12) 

= (27T)-4f exp [i(p - P' + q - q' - 11 - 12)x] dx, 

~(li + 13 - (PI - p~) - (qi - qD) 

= (27T)-4 f exp {i[11 + 13 - (PI - pD 
- (qi - qD]y} dy, 

~(r - r' + 12 - (ri - rD - 13) 

= (27Tr4f exp {i[r - r' + 12 - (ri - rD - 13]z} dz. 

(79) 

The same approximations will also be used, since, 
by construction of .;\(" IKoil is larger than or of the 
order of mi and that negative values of KOi will not 
contribute for large positive Po, ao. 

The parameter d may be introduced for the three 
bubbles (A, H), (AI' HI)' (C, CI ) and we will then 
obtain for Po, ao large compared to d a classical-type 
formula corresponding to three scattering processes 
localized in regions of diameter d at times 0, Po, ao 
with corresponding real intermediate propagating 
particles. 

As in Sec. V.A, we may write 

W(p, a) = f w(p, a, KI , K2, K3) dKI dK2 dK3 • 

The function w is appreciable only for 

Ip - (KI/K40)Pol ,,; d, 
la - (KI/K20)aol ,,; d, 

Ip - a - (K3/K30)(PO - ao)1 ,,; d. 

At the limit when d is negligible compared to Po, 
ao, these equations are those given inlo for "point 
processes," and indeed correspond to classical kine­
matics. 

Other cases. Other cases of Landau-type behavior 
can be treated along the same lines. 

Unstable intermediate particles are related to a 
behavior of type (76) with a propagator Di(ki ) corre­
sponding to an unstable particle 

Di(k;) = (k; - m; + iy)-I. 

However, we are restricted to the cases when only 
one line joins two bubbles in the graph of the singu­
larity. 

VI. EVOLUTION OF STATES 
A. Preparation of a State 

We have written in Eq. (73) the classical current 
intensity of a particle M produced in a scattering 
A + H -+ Al + M, for given probability densities or 
efficiencies of particles A, B, AI' 

Under special conditions (Yo» d), an approxima­
tion has been obtained in Eq. (74). The particle M can 
then be considered as freely propagating. 

We now assume furthermore that the first final 
particle Al has actually been measured by our appa­
ratus. This new information leads us to consider the 
new current intensity jint for particle M: 

jint(K, y) = ~I jint(K, y), (80a) 

where jint(K, y) is defined in Eq. (74a) and WI in Eq. 
(74b), the new normalization being as expected: 

f.i;~t(K, y) dK dylvo>d = 1, (80b) 

where 

j(K, y) = exp [( -yJKo)YoU'(K, y). 

In dividing by WI' we have used the new informa­
tion that particle M has actually been produced. 

It can now be easily seen that, under classical-type 
conditions, S-matrix theory actually leads to a classi­
cal-type description of the preparation of a state. 

In fact, for Po» d, the factor O(yo - Xo + Po) in 
Eq. (75) can be replaced by unity and 

exp [-y(Yo - Xo + Po)/Ko] 

by exp (- y Pol Ko). 
These approximations amount to replacing the 

factor 

1 

in Eq. (58) by 

exp ( - ';;:)~(k2 - m2)t5(k'2 _ m 2
). 

If here, too, the final particle Al has being detected, 
the global transition probability of the scattering 
A + H + C -+ Al + BI + CI can be calculated as 
the transition probability of the scattering M + C-+ 
BI + CI where the state of particle M is given through 
the density matrix 'M: 

(l1(k, k') = exp (-YPoJKO)(l/WI ) 

X f 'a(P, P')'b(q, q')FaCPl, p~)t(p, q, PI, k) 

x t*(p', q', p~, k')b(p + q - PI - k) 

X ~(p' + q' - p~ - k') 

dp dp' dq dq' dpl dp{ x------
2po 2p~ 2qo 2q~ 2PlO 2p~0 ' 

ko = (k2 + m2)t, k~ = (k'2 + m2)!, 

Ko = i(ko + k~), 

(81) 
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where Wl is the transition probability of the scattering 

A + B -+ Al + M, for A, B, Al defined by ~a' ~b' Fa 
and for M defined through the efficiency matrix: 

F JI(k, k') = 2kob(k - k'). 

We may then describe the process by saying that we 
have prepared particle M in the state defined in Eq. 
(81). 

This can be extended to processes of multiple 
successive scatterings. 

B. The Straight Track 

As an example, we answer the following simple 
problem: does S-matrix theory describe the creation 
of a straight track in a bubble chamber? 

In the framework of quantum mechanics, where 
one uses some equations for the evolution of states in 
time, this problem has been solved. 15 •16 

We will give here the classical description of the 
process, and because of the results of Sec. VI.A, it will 
easily be seen that S-matrix theory actually leads to 
that description. 

We consider an rx particle which has been emitted in 
the chamber by a nucleus. Its probability density is 
constant inside the bubble chamber, zero outside, 
after its emission. The momentum distribution is 
isotropic and is usually peaked around some value of 
IFI. It also decreases exponentially with time. 

The chamber is filled with atoms which are de­
scribed by similar probability densities. 

After a while, we see an ionized atom and an 
electron. If we call ja(P, x), jb(Q, x) the current in­
tensities of the rx particle and the atom, respectively, 
Ea(PI , x), Eb(QI, x) the efficiencies for the detection of 
the ionized atom and electron, respectively, we get, 
according to formula (73), the rx-particle current inten­
sity after collision: 

jtnt(K, y) 

= .-L fja(p, x)MQ, x)EaCPI , x)Eb(Q1' x) 
WI 

X b( x - y - :0 (xo - YO») exp ( - y(y~~ xo») 

x O(Yo - xo)b(k2 
- m2)w(P, Q, PI, QI' K) 

X b(P + Q - PI - QI - K) dP dQ dPI dQI dx 

X _1_ b(K2 - m 2)(;l(Ko). 
2Ko 

(82) 

The process of seeing, in S-matrix theory, is akin to 

" N. F. Mott, Proc. Roy. Soc. (London) 126, 79 (1929). 
16 For the general study of many problems similar to those 

studied in our work in the framework of quantum mechanics, we 
refer to A. Messiah, Mecanique quantique (Dunod Cie., Paris, 1965). 

the process of trackmaking and should be, of course, 
treated along the same lines. A complete measurement 
theory should involve these ideas in a "bootstrap" 
sort of way. 

If Ea, Eb are rapidly decreasing in x - (PI/PlO)XO ' 

x - (QI/QlO)XO and have no overlap in velocities 
PdPIO ' QI/QlO, the region of the first interaction is 
well defined and the product EaEb rapidly decreasing 
in x in all directions. 

Now we see a second group of ionized atoms and 
electrons. Then the current of the rx particle, after the 
second collision, will be 

jl~~(L, z) 

= (1/W1W2) fjtnt(K, y)jb(R, y)EaCRI' y)Eb(SI' Y) 

X o(y - z - (Lj Lo)(Yo - zo»O(zo - Yo) 

X exp [-y(zo - Yo)jLo]o(L2 - m2) 

w(K, R, RI , S, L)b(K + R - RI - SI - L) 

X dK dR dR I dSI dyO(Lo)(1/2Lo). (83) 

Here, again, the product Ea(RI' y)Eb(SI' y) defines 
the region of the second interaction. 

We substitute the expression of j(K, y) given by (82) 
into Eq. (83). Because of the factor b(x - y -
(K/Ko)(xo - Yo», 

K y - x 

Ko Yo - Xo 

is well enough defined. Then, because of the shape of 
w(K, R, R1 , Sl, L), the current density jl~i(L, z) will 
be peaked in the region defined by 

L K y - x 

Lo Ko Yo - Xo 

(This is the well-known fact that, if the particle rx has 
a well-enough defined velocity, this velocity cannot 
be appreciably changed.) 

Now since j(L, z) is peaked around some value of 
L/Lo, the probability of a new interaction will be 
peaked for this new interaction happening around the 
direction given by the line joining the localized regions 
of the two first scatterings, and so on, which explains 
the occurrence of a straight track. 

Owing to the results of Sec. V.A, the same result 
will hold in S-matrix theory: the probability of seeing 
a new interaction is peaked in the direction of the 
first two. 

VII. CONCLUSION 

The following general hypotheses have been made. 
The S matrix is assumed to conserve energy-momen­
tum, which yields energy-momentum conservation and 
translational invariance of the transition probabilities. 



                                                                                                                                    

S-MATRIX AND CLASSICAL DESCRIPTION OF INTERACTIONS 1261 

TABLE I. Results for the S matrix. 

Approximations Consequences 

Invariant density or efficiency 
functions 

h(P, X),jF(P, x) = gF(P, x - ;0 xo) 

X o(P2 - m2)O(Po) 

1 -« Ax 
m 

1 -« Ax 
m 

1 
'A «Ax 

" 

I 
Vt I 1st order 
- «Ax 
t Oth order 

Single scattering 
coarse-grained locality 

locality 

Double scattering 
Ko 
-«Ax ~ Ap bump in the cross sections 
Y 

~«Ko« Ax 
Ap Y 

on-mass-shell kinematical condition 

1 d Ko - « Ax S «po ~ - propagation of a real intermediate 
particle m Y 

A property of the decomposition in connected elements 
is also assumed to hold and yields a cluster property of 
the transition probabilities. 

The other results can be summarized in Table I. 
In this table, Ax and Ap are the space and momen­

tum deviations of the density and efficiency functions, 
respectively. Under the approximations made, they 
enjoy the properties of classical probability densities 
and measurement efficiencies, respectively. 

The table then shows under which conditions 
coarse-grained locality or locality of an interaction is 
obtained. 

A polelike behavior of the connected elements is 
assumed in a weak form (analyticity hypotheses are 
not necessary) and, under the conditions of the table, 
leads to the usual classical cases mentioned. The 
4-vector K is the momentum of the "intermediate" 
particle. The first case is the observation of a bump 
of width y/Ko in the cross sections, for instance the 
case of the N*. In the second case, an on-mass-shell 
kinematical condition is written, as in the case of the 
1;0. The last case mentioned corresponds to two 
successive scattering processes which are localized in 
space-time regions of diameter d, separated by a 4-
vector p, with the propagation of a real intermediate 
particle, for instance, a neutron. 

Landau-type behavior of the connected elements 
can also lead to classical-type formulas of multiple 
successive scatterings. 

All the above results allow one to understand how 
S-matrix theory actually leads to the usual classical 
description of the preparation of a state, and generally 
to the usual classical description of processes, in­
volving the usual classical concepts and formulas. 

These results are satisfactory and justify a posteriori 
general hypotheses on S-matrix theory and on the 
correspondence between the S matrix and classical 
description of states. 

Dynamical aspects of interaction processes are not 
studied. It is the aim of theories involving stronger 
hypotheses to obtain the corresponding results. For 
instance, axiomatic field theoryI7 or analytic S-matrix 
theory are two theories which contain, in particular, 
all the features of S-matrix theory used here and are, 
of course, much more restrictive. 

Thus we think it is useful to know what part of the 
hypotheses of such theories corresponds to the kine­
matical aspects of the description of processes, and to 
understand precisely how and when they lead to the 
classical description, which is the only ground on 
which theory and experiment meet. 

Note Added in Proof: Various new results on 
asymptotic space~time properties in S-matrix theory 
have been obtained recently by C. Chandler and 
H. P. Stapp [J. Math. Phys. to, 826 (1969)J and 
D. Jagolnitzer and H. P. Stapp (report of work prior 
to publication). A general review of space-;time prop­
erties in S-matrix theory and the current status of the 
results reported in this paper were presented by the 
author at the 1968 Boulder Institute for Theoretical 
Physics. 
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APPENDIX A: SINGULARITIES From that condition, the polelike behavior of the 

This is a short critical review of what has been or 
can be said about the relation between timelike 
cluster properties of the transition amplitudes and 
one-particle singularities or more generally Landau­
type singularities of the connected matrix elements. 

It is thus distinct from the general purpose of this 
work which is to obtain the classical formulas. 

Derivation of the Propagator 

We consider, for the sake of simplicity, a scattering 
A + B + C ---+ Al + BI + C1 , where the particle states 
are defined through the wavefunctions 9?a(P) , 9?b(q) , 
9?e(r), "Pa(PI), "Pb(ql), "Pe(rl). 

The kinematical and other conditions allow the 
possibility of scatterings A + B ---+ Al + M, C + 
M ---+ BI + C1 for some particle M. No other possi­
bility exists. 

We denote by Ap the state of particle A translated 
through the 4-vector p and we define the following 
quantities: 

L(p) = (ABCPI T IAIBfCf), 

N(p) = (CPMI T IBfCf), 

where the state of particle M is defined through its 
wavefunction 

9?M(k) = (ABI T IAIk), 

JI9?llik)1
2 ~:o = WI' 

where WI is the transition probability from A, B to 
Al and M, the states of particles A, B, Al being defined 
above, and all final states of M being considered. 

We then define 

H(p) = L(p) - O(Po)N(p). 

For large IPol, the property (P) stated in Sec. II.D 
means that IL(p)1 should behave like IN(p)1 for Po > 0, 
and be negligible for Po < o. Assuming furthermore 
that it also holds for the transition amplitudes, it 
means that H(p) should be negligible for large IPol. We 
do not know if and how it is possible to derive it. As it 
is stated here, it is a strong hypothesis. 

Different kinds of conditions can be stated. For 
instance, Wanders4 requires the rather weak, but yet 
arbitrary, condition: 

connected matrix elements is derived: 

T(p, q, r, PI' ql, rl) = t(p, q, r, PI' ql' rl) 

X b(p + q + r - PI - qi - r l ), 

t(p q r P q r) = (p, q, r, PI' ql' rl) 
",1,1,1 22 l' 

ko - (k + m + iE) 
where 

k = P + q - PI 

and :R has a suitable regularity property. 
This polelike behavior can also be derived7•8 from 

analyticity (and unitarity6), the function :R being then 
analytic. 

Some authors5 like better to consider, instead of the 
quantities L(p), N(p), H(p), the quantities N(O) and 

I.:(Po) = J T(p, q, r, PI' ql' rl) 

X 9?:(p )9?:( q)9?:(r)"PaCPI)"Pb( ql)"PcCrl ) 

X exp {iPo[ko - (k2 + m2)!]}1T dp 1T dq . 
2po 2qo 

Their requirement, claimed to be "physically rea­
sonable," is that-at least for test functions of S such 
that furthermore all velocities cannot be equal all 
together-the quantity 

H'(PO) = I.:(po) - O(Po)N(O) 

should go rapidly to zero for large IPol. To us, the 
restriction of the test functions given here may be 
reasonable enough, but not the substitution of the 
quantity H' for H. 

The polelike singularity is derived here too, the 
Fourier transform L'(~) of L'(po) being the product of 
the propagator l/(~ + iE) with a Coo function. 

Converse Part 

Conversely, let us consider the hypotheses of a 
polelike behavior of the I-matrix elements in the 
following form: 

t(p q r P q r) = :R(p, q, r, PI' ql' r1) 
, , , 1, 1, 1 2 2 t ' 

ko - (k + m) + iE 

where :R is some function, satisfying, furthermore, 
the condition 

:R(p, q, r, PI' ql' r1)ko=(k2+m2)! 

= (l/2ko)t(p, q, PI, k)t(k, r, ql, r l ). 



                                                                                                                                    

S-MATRIX AND CLASS1CAL DESCRIPTION OF INTERACTIONS 1263 

One gets 

L(p) =IS(k, ko) I! 
ko - (k2 + m2) + i€ 

X exp (ipk) d4k, 

S(k) = I :R(p, q, r, PI' ql' rl)cp:(p)lPt(q)cp:(r) 

X "PiPl}!Pb(ql}!pirl)t5(P + q - PI - k) 

( ) 
dp PI 

X t5 k + r - ql - r 1 7T - 7T - , 

2po 2PIO 

N(p) = I S(k, ko)t5(ko - (k2 + m2)!)exp(ipk)dk, 

()(Po)N(p) =IS(k, (k2 + m2)!) I! 
ko - (k 2 + m2

) + i€ 

X exp (ipk) dk, 

I.;(po) =IS(k, ko) 1! 
ko - (k2 + m2

) + i€ 

X exp {ipo[ko - (k2 + m2)!]) dk. 

By making different kinds of hypotheses both on 
the nature of the function :R and on the test functions, 
it is possible to get results. 

For instance, H'(po) can be written as 

H'(po) =I(I (~) - I (0» _1_. exp (ipo~) d~, 
~ + I€ 

where 

I (~) = I S(k, ko)t5(ko - (k 2 + m2)! - ~) d4 k. 

By assuming that :R is a Coo function and considering 
test functions in S, the rapid decrease of H'(po) for 
large I Pol can be deduced. 

Although the consideration of H(po) is not so easy, 
conclusions can also be drawn from the expression 

Unstable "Intermediate" Particle 

The case when the t-matrix elements behave like 

t(p q r P q r) = .At,(p, q, f, PI' ql , f 1) 
, , , 1, 1, 1 k2 2 . , 

- m + Iy 

with some hypothesis on the behavior of .At" can also 
be studied7 .8 (e.g., if .At, is analytic and factorizable 
in two parts for k2 = m2 + iy) by comparison of 
L(p) [respectively, L'(po)] for large IPol, lyPo/kol "" 1 

with Nip )()(po) [respectively, ()(Po)Ny(O)], where 

()(Po)N rep) 

= I cp(p, q, r, PI' ql' r1)t(p, q, PI' k)t(k, r, ql, r1) 

X t5(p + q - PI - k)()(po) 

dp dpl 
X t5(k + r - ql - r1)7T - 7T -

2po 2PIO 

dk 
x exp (-yPo/ko) - . 

2ko 

This case may be treated along the same lines as the 
"stable" case. 

Landau-type Case 

The case of a Landau-type behavior can also be 
'treated in a similar way. A simple qualitative hintlO 

indicates why Landau singularities in the physical 
region can be rdated to physical possible processes. 

In general, a predominance rule of all physically 
possible processes with all possible intermediate 
particles should be stated. 

Some progress seems to be made from different 
kinds of hypotheses. 

Analyticity hypotheses with simple conjectures lead 
to interesting results.18 

Hypotheses of rapid decrease in time of the part of 
the amplitude remaining after all terms corresponding 
to physically possible processes have been subtracted 
out may seem "physically reasonable" and promising. 

APPENDIX B: ABOUT WIGNER FUNCTIONS 

Definition 

There has been a lot ofliterature about the Wigner or 
other "quasiprobability" functions. Curiously enough, 
people usually limit themselves to the case of a density 
matrix-and do not study the more general case of an 
efficiency matrix! 

Authors then consider the following correspond­
ence: 

where - is the closure of the operator. Then the Wigner 
function is the Fourier transform of SeA, ft): 

gw(P, x) = I seA, ft) exp [- i(AP + ftx)] di. dft· 

The above correspondence is more generally an a*­
isomorphism of the algebra of Hilbert-Schmidt 
operators on the Hilbert space of square-integrable 

18 F. Pham, "Singularites des processus de diffusion multiple" 
CERN Preprint 65/487/5-TH651, 1965. ' 
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functions into the algebra of square-integrable complex­
valued phase-space functions [with multiplication 
defined in Eq. (32)].19 

Discussion of Equation (29) 

To some extent, Eq. (29) is related to von 
Neumann's20 construction of sets of two commuting 
operators which approximate Xop and Pop and which, 
instead of having a continuous spectrum as the usual 
position and momentum operators, have discrete 
eigenvalues, the product of intervals between two eigen­
values of each being larger or equal to one. 

To prove Eq. (29) as recalled in Sec. III.B.2, one 
may write the inequality 

o ~ (Xol F IXo) ~ (Xo I Xo) 

for a minimal wavepacket Xo: 
3 

Xo(p) = (2Poyi ( B", )2 exp (ipxo) 
J27T 

X exp [-tB;(p - PO)2]. 

Equation (29) follows for Bp = (2B",)-1, BpB., = t. 
The generalization to BpB", ;;:: t is then trivial [a con­
volution with BpB", ;;:: t can be separated into the 
product of convolutions with B~B~ = t and another 
one with positive (exponential) functions]. 

We may also obtain this directly by using the in­
equality 

o ~ Tr F'o ~ 1, 

valid for all density matrix '0, then choosing 

'o(p, pi) ex exp [i(p - p')XO] exp [-!B!(p _ p')2] 

X exp {-[!(p + pi) - Po]2B;2}(2Po)~(2p~)}, 

which is a kernel of density matrix if and only if 

BxBp ;;:: 1· 
Some authors define new kinds of "quasiprobabil­

ity" functions instead of the Wigner function. 
For instance, what Bopp has written21 is, as a matter 

of fact, nothing else than the convolution of gw 
through 'T!(x)'TI/l(P) where 1 is some "fundamental" 
length. However, the physical meaning as well as the 
exact equation (29) is not clearly given. Furthermore, 
we do not follow him on the ground of "funda­
mental" length I. Equation (29) is valid for all {Ex, Bp: 
B.,Bp ;;:: 1}. 

Other authors22 prefer to say that instead of the 

19 J. C. T. Pool, J. Math. Phys. 7,66 (1966). 
20 J. von Neumann, Mathematical Foundations of Quantum 

Mechanics (Princeton University Press, Princeton, N.J., 1955), 
p. 398-416. 

21 F. Bopp, Ann. Jnst. Poincare 15, 81 (1956). 
22 See, for instance, C. L. Mehta, "Coherence and Statistics of 

Radiation," in Lectures in Theoretical Physics, Vol. VIle, W. 
E. Britten, Ed. (University of Colorado Press, Boulder, Colo., 1965). 

above correspondence, 

they will consider correspondences using other 
"orderings" of Pop and Xop or combinations, i.e., 
things like exp (i}.Pop) exp (it-tXop), etc. 

If one defines dimensionless operators Pop and xoP 
using Pop = IPop , xoP = l/IXop (l is some length), and 

A = (xop + iPop)/V2, 

A+ = (xop - iPop)/V2, 

IX = -}./(lV2) + it-t(l/V2), 
one gets 

-IX*A + IXA+ = }'Pop + t-tXop, 

exp (-IX* A) exp (IXA+) 

= exp (-IX*A + IXA+) exp (-11X12) 

= exp [i(APop + t-tXop)] exp [_(}.2/2/2 + t-t2~/2)]. 
Thus the new "quasiprobability" function defined 

by Glauber et al. through 

,-+ SeA, t-t) = Tr 'exp (-IX* A) exp (IXA+) 

is also just the convolution of the Wigner function 
with 'T/X)'Tl/!(P) as in Bopp's case. Same comment as 
about Bopp's case applies. 

Positive Wigner Functions 

Let us end now through a short discussion of 
Eqs. (26), (27), and (28) where cases when Wigner 
functions are positive were studied. 

The function go defined in Eq. (26) can be proved to 
be the Wigner function of the density matrix '0 defined 
in Eq. (27) by using, for instance, a theorem by Bloch 
concerning the probability law of a combination of 
momentum and position. 23 

In the special case studied here, the Wigner function 
is formally identical with the probability density of the 
classical case. It can be easily understood by consider­
ing that one has to minimize in the classical case 
S g In g and in the quantum case Tr , In ,. 

Then 

Tr ~ In' = fmw(p, x)(ln ')w(P, x) dP dx, 

(Pup)w = P, 

(Xop)w = x. 

In this special case, (In nw(p, x) ex In Ww(P, x). 
The equations of the classical and quantum mechanical 
case then become identical. 

2. See A. Messiah, Mecanique quantique (Dunod Cie., Paris, 1965), 
Vol. I, p. 382. 
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Partial-Wave Expansion in the Crossed Channel for Scattering 
Amplitudes Invariant under the Galilei Group* 

J. L. GERVAIst AND G. VELO+ 

Department of Physics, New York University, New York 

(Received 5 September 1968) 

A partial-wave analysis in the crossed channel is performed for a Galilean~invariant scattering matrix 
using the irreducible unitary representations of the Euclidean group in two dimensions. As in the rela­
tivistic case, a formula is obtained which is useful in determining the high-energy behavior of the scattering 
amplitude for fixed-momentum transfer. In particular, the Born term is shown to correspond to a ij 

function in this representation. Moreover, this parametrization is related by a group contraction to the 
corresponding background term of the relativistic case. 

1. INTRODUCTION 

In the Regge approach to relativistic two-body 
scattering, an expansion is obtained for the amplitude 
res, I) by a Sommerfeld-Watson transformation. 
One gets, typically, for unit masses 

res, t) = 2: fJi(t)P~i(t) -1 ---(
" 2s ) 

i t - 4 

+ 1 f+ ood GCt, a) p "(-1 _~) a -!+.a , 
i -00 cosh ('ITa)· t - 4 

(1.1) 

where sand t are the usual Mandelstam variables. 
A group-theoretic interpretation can be given to this 
formula which is identified with a partial-wave 
analysis performed in the t channel while remaining 
in the physical region of the s channel1.2 and it pro­
vides a very interesting link between Regge poles and 
certain representations of the Poincare group. There 
seems to be a general feeling that such a link does not 
exist in the case of nonrelativistic scattering, where 
the group of invariance is the Galilei group.3 We 
believe that this is due to the fact that people have 
been seeking expressions looking exactly the same as 
(Ll). In this connection it is useful to recall that (1.1) 
contains the Regge poles of the crossed channel and 
not the poles originally obtained by Regge.4 More­
over, in nonrelativistic scattering there is a funda­
mental difference between the sand t channels, the 
latter being a purely kinematical concept. 

• Research supported in part by the National Science Foundation. 
t Present address: Laboratoire de Physique Theorique Faculte 

des Sciences, Batiment 211, Orsay, Seine et Oise, France. 
:\: On leave from the Istituto di Fisica dell'Universita di Bologna 

(Italy). 
1 H. Joos, in Boulder Lectures in Theoretical Physics, Vol. VI! 

(University of Colorado Press, Boulder, Colo., 1964), p. 132. 
2 M. Toller, Nuovo Cimento 37, 631 (1965). 
3 J.-M. Levy-Leblond, Nuovo Cimento 45A, 772 (1966); L. H. 

Ryder, ibid. 52A, 879 (1967). 
• T. Regge, Nuovo Cimento 14,951 (1959); Nuovo Cimento 18, 

947 (1960). 

F or these two reasons one should not expect to reach 
a result exactly similar in structure to (1.1) in the 
SchrOdinger theory. We will show that a partial-wave 
analysis in the t channel using the Galilei group leads 
to an expression whose main difference from (1.1) is 
the replacement of Legendre polynomials by Bessel 
functions. This is quite natural, since in the contraction 
of the Poincare group to the Galilei group the 
Legendre functions go to the Bessel functions. 
Furthermore, the Born term, which determines the 
high-energy behavior at fixed-momentum transfer 
corresponds to a pole in the continuous parameter in 
which the expansion is made. 

2. GROUP-THEORETICAL COUPLING OF 
INITIAL AND FINAL STATES 

We recall that the Galilei group G is the set of 
elements of the form 

g = (aO, a, Y, R). (2.1) 

This group acts on the coordinates (t, x) of space­
time according to 

x' = Rx + YI + a, 
(2.2) 

where aO and a are time and space translations, 
respectively, Y a velocity, and R a rotation. 

Bargmann5 has demonstrated that all irreducible 
unitary continuous projective representations of the 
covering group of the Galilei group (J are characterized 
by the system of factors " 

w(g', g) = exp [tim(a' • R'y - Y' • Ra + aOy' • R'y)]. 

(2.3) 

The universal covering group (J is obtained by per­
forming the usual substitution R -- A E SU2 • As 
shown by Bargmann, the parameter m, if greater 

5 V. Bargmann, Ann. Math. 59, 1 (1954). 
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than zero, can be interpreted as the mass of the 
particle. 

We give a brief sketch on how to get the irreducible 
unitary representations of (J following the method 
of Mackey.6 (For details see Refs. 6-8.) 

The characters of the space-time translations 
(aO, a, 0, 1) are the usual ones, 

and the energy-momentum p = (po, p) transforms 
according to 

pO' = pO + V • Rp + imv2, 
p' = Rp + my. 

(2.4) 

(We always adopt, where possible, the four-dimen­
sional notation.) 

I t can be easily checked that 

2m pO - p2 = B (2.5) 

is invariant under the transformation (2.4) and, con­
versely, two four-vectors, lying in the same orbit corre­
sponding to a fixed value of B, can be connected by 
a transformation (2.4). Thus the number B is one of 
the labels of the irreducible unitary representations. 
We can then parametrize each orbit by choosing a 
fixed vector h and a transformation M p of the type 
(2.4) such that p = Mph. [We will always denote by 
M the elements of the form (0,0, v, A), written 
simply as (v, A).] 

The irreducible unitary representations can now 
be written in the space of the square-integrable func­
tions on the orbit with respect to the measure 
d4pb(2mpO - p2 - B): 

(U(a, v, A)f)(Mp) = eiP'aQ(M;lMMMp_l)!(MMp_1), 

(2.6) 

where we have put M = (v, A). The set of Q's form 
an irreducible unitary representation of the little group 
Gh of h, to which M;l M M"lf p-~ belongs. More generally, 
Mackey6 works with the functions defined on the 
group (J and the representation is the left-regular 
representation. The link between the functions on the 
group and !(M p) is given by the so-called "Q covari­
ance along left cosets" 9 expressed by 

!(Mq;) = Q-l(q;)!(M) 
if q; E Gh • 

6 G. Mackey, The Theory of Group Representations (The Uni-
versity of Chicago Press, Chicago, 1955). 

7 1.-M. Levy-Leblond, 1. Math. Phys. 4, 776 (1963). 
8 J. Voisin, J. Math. Phys. 6, 1519 (1965). 
• P. Moussa and R. Slora, in Boulder Lectures in Theoretical 

Physics, Vol. VII (University of Colorado Press, Boulder, Colo., 
1964), p. 37. 

We now have to distinguish two different cases: 
if m is not zero, looking at (2.4), one sees that Gh is 
isomorphic to SU2 • Accordingly, the Q's are the 
standard DB matrices and s is interpreted as the spin 
of the particle. In the following, a convenient param­
etrization of the orbit will be the choice 

h = (::' 0) and Mp = (~ ,1). (2.7) 

Then one obtains 

M;/MMMp-l = (0, A). 

If m = 0, Gh is the set of (0,0, v, A) such that 

h· v = ° and R(A)h = h. 

This group is isomorphic to the two-sheeted covering 
group of the Euclidean group in two dimensions £2' 
The irreducible unitary representations. of £2 are 
recalled in the Appendix. If the representation of the 
little group is one-dimensional (the so-called finite­
spin case), one has simply 

Q(n)(M-1MM ) _ einO(ftfp-'"1111fMP-') 
p "1i p - 1 - • 

In the case of infinite-dimensional representations 
(infinite spin), the representations of (J take the form 

(U(a, v, A)!)(Mp, Cx) 

- ip·a iu,xD'(C-1CC )!(M C) - e e "Cx-l 111.-1, Cx-l, (2.8) 

where we have let M;lMMM._l = (u, C). As it can be 
seen by direct inspection of (2.4), given any h = (hO, h) 
on the orbit with -h2 = B, a convenient choice of 
Mp is (w, Ap), where R(Ap)h = p and 

w = p[pO _ hO]!p2. 

With this choice, one has 

u = R(Ap)-l[ v - V;2P pJ 
and C = A:;lAAMp_l. As expected, u is orthogonal to 
h, since 

v·p 
v--p 

p2 

is the component of v orthogonal to p. 
Since we are interested in making a partial-wave 

analysis in the crossed channel, that is in coupling an 
incoming particle of mass m with the same outgoing 
particle, we now focus our attention on performing 
the reduction of the product of a representation of 
mass m ¥ ° and a representation of mass -m (see 
Sees. 4 and 7). In this case the product of the factors 
(2.3) gives unity and one expects to find in the de­
composition true representations, i.e., mass-zero 
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representations. In performing the reduction we follow 
the method of Moussa and Stora,9 stressing only those 
points which are particular to our problem. 

The product representation is given by 

(U(a, M)!)(fI(fz(Mpl , M p2) 

= ei (PI+P2)'a DSl (M-l M M _ ) 
(fITI PI ll'I"1 I 

X D!~riM;;MMMp2-1)f,.lT2(MM"1-1' MM".-I). 

(2.9) 
The orbits are, respectively, 

2mp~ - Ipl12 = B1 , 

-2mp~ - \P212 = Ba, 

and we denote by hI and h2 the fixed vectors chosen as 
explained in (2.7). As shown in Ref. 9 the set 
(Mpl , M

p2
) has to be decomposed into double co sets 

which are characterized by the condition: (Mpl , M p2) 
is equivalent to (M PI" M Po') if and only if there exists 
an M such that p~ = M PI and p~ = M P2' In each 
double coset one can choose a representative 

(M"'I' M",.) with 

M", = (v, 1) and M", = (-v, 1). (2.10) 
I 2 

Then, WI and W2 are given by 

WI = mY, 

Any member of the double coset under consideration 
can be written as (Mp,QL1M"'1' Mp,QL2M",.) wher~ 
L; E GWi (i = I, 2). Therefore, by covariance, 

!(Mp.QL1M"'1' M p.QL 2M",.) 

= DSI( M;;Ll M "') DS2( M;!LzM ",,) 

x !(Mp,QM"'I' Mp,QM",.). (2.17) 
If we put 

f(Mp,QLM"'l' Mp,QLM",.) = /(Mp,QL) , (2.18) 

the transformation law for !(Mp,Q) is 

(U(a, M)/)(fI"iMp,Q) 
iP'''Dsl (M-1M-1 MM M ) = e "ITl "'I P,Q Mp-I,MQ-l "'I 

X D!;r2(M;!Mp~QMMMrl,MQ-IM",,) 
x h IT2(MMp-l,MQ-l). (2.19) 

One can see that Mp:OMMMp-'.,'IQ-I belongs to 
GWI n Gw2 ,which is the set of elements (0, A), such 
that R(A)v = v and v is the same as in (2.10). There­
fore, the Mm. (i = 1,2) which commute with 
G

W1 
n G

W2 
can' be dropped from the argument of 

DB, (i = 1, 2) in (2.19). Furthermore, by quantizing 
both spins along v we can simultaneously diagonalize 
DBI and D S

2. They take the form 

D!~Ti(Mp~QMMMP-I,MQ-I) 
w~ = (Bl/2m) + tmv2

, 
(2.11) = lJ"iTi exp [iai?,(Mp~QMMMp-I,M{rl)]. 

002 = mY, 

wg = -(B2/2m) - tmv2
• 

If we define 

17 = WI + 0)2 = (Bl 2-:n B2 , 2mv), 

(2.12) 

(
Bl + B2 2) X = WI - w2 = 2m + mv , 0 , 

Eq. (2.4) shows that 17 transforms with the mass 0 
and X with the mass 2m. The invariant B of 17 can be 
used to label the double cosets. For any (Mpl , Mp.) 
in the same double coset of (M"", M",.), we introduce 

and we denote by 

p = PI + P2, 

Q = PI - P2, 

Mp,Q = (w, Ap) 

(2.13) 

(2.14) 

one of the homogeneous Galilean transformations 
such that 

PI = Mp ,QO)I, 

P2 = M p ,QW 2' 

It follows that 

p = (17° + W· R(Ap)1t, R(Ap)1t), 

Q = (XU + mw2 , 2mw). 

(2.15) 

(2.16) 

Looking at (2.14) one easily checks that 

Mp,Q = MpSQ, 
where 

Mp = (WI' Ap), 

SQ = (R(Ap )-IW2 , 1), 
(2.20) 

and WI, W2 are the components of w along P and in 
the plane orthogonal to P, respectively. We recall 
that, according to (2.16), 

w = Q/2m. (2.21) 

If L E GWl n GW2 ' then SQL E G" and we can expand 
j(Mp,QL) according to (A4). One obtains 

hl(f.(MpSQL) 

= 1.- +; eiil'PJd xe-iX.R<Ap)- lw21p(l) (x M) (2.22) 217.!;;,1 2 O'h", ' p, 

where fP is the rotation corresponding to L. 
By covariance [see (2.17)], it turns out that I = a1 + 

a2 • Finally, it is straightforward to verify that the 

with Ixl = rand € = ± 1 according to whether 
a1 + a2 is an integer or a half-integer, transform 
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following (2.8). That is, the "p are the basis for an 
irreducible unitary representation of zero mass. 

3. COMPUTATION OF CLEBSCH-GORDAN 
COEFFICIENTS 

As in Ref. 9 we introduce the state 

11» = f d4Pl d4plj(2mp~ - pi - B1) 

x b( -2mpg - p~ - B2)ju,u,(Mp" M p2 ) 

x 1m, B1, PI' SI' ( 1) I-m, B2, P2' S2' ( 2), (3.1) 

where jUlu, transform according to (2.9) and the 
1m, B, p, s, a) form a basis for an irreducible unitary 
representation of the Galilei group with mass m yf 0, 
inner energy B, and spin s. We set the normalization 
to be 

(m, B, p, s, a/ m, B, p', s, a') = 21ml ba(p - p')buu" 

Since, clearly, 

and 
MP1 = Mp ,QMwl N l 

Mp , = Mp ,QMw ,N2 , 

with Ni E Ghi (i = 1, 2), we obtain by covariance 

jUIU2(Mp1 , M p ,) = D~~T.(Nl1)D!;T,(N21)J,.IT,(M P,Q)' 

where J is given by (2,18), 
After expanding h,r,(M P,Q)' as shown in (2,22), 

we substitute it in (3,1) and perform the change of 
variables (2.4), The result is 

11» = .l JO dBfd4P d4Qb(P2 + B) 
87T -00 

x b(4mQo - Q2 + B - 2(B1 + B2») 
x b(2mPO - P . Q + B2 - B1) 

x D!~T'<Nl1)D!~T,(N21) 

x Jd xe-ix'R(Ap)-lw. ",(Tl+T,)(X M ) 
2 ;T1,T2' P 

x Im,B1,P1,sl,(1)I-m,B2,P2,s2,a2), (3,2) 

One can rewrite (3.2) in the following way: 

11» =JCL dBJd4Pb(P2 + B) roo r dr(~)! 
-00 Jo 41PI 

where 

IB, P, r, 6, T1' T2) 

= 417T(1~1)! J d4Qb(4mQo - Q2 + B - 2(B1 + B2» 
x b(2mPO - P . Q + B2 - B1) 
X DS' (N-1)DS , (N-1)e-iRL4p)x,w, 

0'1r1 1 t12T2 2 

X 1m, B 1 , PI' Sl, ( 1) I-m, B2 , P2' S2' ( 2)· (3.4) 

As 1p transform according to an irreducible unitary 
representation of zero mass, (3.4) form a basis for 
an irreducible unitary representation with zero mass, 
inner energy B, and degeneracy parameters T1 and T2' 
The normalization is given by 

(B, P, r, e, T1' T2/ B', P', r', e', T{, Tf) 

= 0TITI,bT,T.biP - P')o2(R(Ap)(x - x'». 
It is now straightforward to compute the Clebsch­
Gordan coefficients, obtaining 

(m, B1 , PI' s1> a1; - m, B2, P2' S2, a2 / B, P, r, e, T1' T2) 

= (2/7T)(m IP!)! D!~Tl(Nl1)D!~T,(N21) 
X e-iR(Ap)x.w,oaCP - PI - P2) 

X b(2mPo - P . (PI - P2) + B2 - Bl)' (3.5) 

As expected, they satisfy the completeness property 

J d4P d2(R(A l')x) ~;I ~;, 
x (m,B1 , Pl,SI' a1; -m,B2 , P2 ,S2' a2/ B, P, r, e,Tl ,T2) 

x (B, P, r, e,Tl,T21 m, B1, p{, SI' a{; -m, B2, P;, S2 ,a~) 

(3.6) 

4. PARTIAL-WAVE ANALYSIS OF THE TWO­
BODY SCATTERING AMPLITUDE IN THE 

CROSSED CHANNEL 

In order to simplify the presentation we restrict 
ourselves in what follows to the problem of the 
elastic scattering of two spinless particles with zero 
internal energy and masses m1 and m2 • We will denote 
by k i and Pi' respectively, the incoming and out­
going four-momenta of the particle with mass mi 

(i = 1,2). 
The scattering matrix S(Pl, P2' kl' k2) is invariant 

under simultaneous Galilean transformations on the 
four particles. As discussed in Ref. 2, one must use 
for the outgoing particles the complex-conjugate 
representations. In our case this is equivalent to ex­
changing the mass mi with the mass -mi and the 
four-momenta Pi with -Pi' We then decompose into 
irreducible representations the tensor product of the 
representation IkJ with the complex conjugate of 
the representation of IpJ. This is nothing else but 
the decomposition performed in Sec. 2. Using the 
identity 

S(P1' P2' kl , k 2) 

= J d3P{ d3P~ dak{ d3k;oaCP1 - pD03(P2 - pD 

X 03(k1 - kDo3(k2 - k;)S(p~, p;, k{, k~) 
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and the completeness relation (3.6), one can write 

S(Pl' P2, kl , k2) 

= f d4P d4P' d2(R(Ap)x) d2(R(Ap)x') 

x (ml,PI; -mI , -kil PX)r(p,p', X, X') 

x (p'x'i -m2' -P2; m2, k2), (4.1) 

where r is given by: 

rep, P', X, x') 

= (16mI m2)-2 f d3P~ d3P~ d3ki d3k; 

x (Px I ml , p~; -ml , -kDS(pi, p~, k~, k~) 

x <-m2 , -p~; m2' k~ I P'x'). (4.2) 

Because S is Galilean-invariant, the distribution r 
is diagonal in P and R(Ap)x. We write it as 

rep, P', x, x') = (7T2/4IPI)(mlm2)-~04(P - P') 

02(R(Ap)x - R(Ap.)x')y(P, R(Ap)x). (4.3) 

Furthermore; yep, R(Ap)x) is invariant under Gali­
lean transformations which rotate R(Ap)x in the two­
dimensional plane orthogonal to P and transform 
P following (2.4) with zero mass. As usual, we con­
sider y as a function of the invariants which are only 
p2 and lxi, since p. R(Ap)x = O. Accordingly, the 
partial-wave expansion (4.1) takes the form 

S(PI' Pz, kl , k 2) 

__ 1_ o( p~ + p~ _ k~ _ k~) 
4m 1m2 2ml 2m2 2ml 2m2 

x 03(PI + P2 - kl - k 2) f d2yeiy
.
AY«PI - k 1)2, Iyl), 

(4.4) 
where 

11 = PI + kl _ P2 + k2 (4.5) 
2ml 2m2 

and the integration on y is performed in the plane 
orthogonal to P2 - k2 • By going to polar coordinates, 
(4.4) becomes 

S(Pl, Pz, kl , k 2 ) 

__ 7T_ O( pi + p~ ki k~) 
2mIm 2 2ml 2m2 2mI 2m2 

x O(PI + pz - kl - k z) \ 

X 100r drY«Pl - kl)2, r)10(r 1111), (4.6) 

where 10 is the Bessel function of zero order. 
The important fact to be observed about either 

(4.4) or (4.6) is that Y depends on the momenta of 

the particles only through the momentum transfer 
t = (PI - kl)2. This makes these formulas particu­
larly appropriate to study the high-energy behavior of 
the scattering amplitude at fixed-momentum transfer. 
In a relativistic theory, the corresponding property is 
that the "residue functions" depend only on t. 

It is known that, if the potential is regular enough, 
the high-energy behavior of the scattering amplitude 
at fixed t is given by the Born term.lo One can verify 
that, up to a constant, the corresponding yB is 

yB(p, R(Ap)x) = o2(R(Ap)x)V(P), (4.7) 

where V is the Fourier transform of the potential. 
[If one wants to insert (4.7) into (4.6) the 02(R(Ap)x) 
has to be replaced by -o'(r).] In this case, the high­
energy behavior at fixed momentum transfer is 
given by a pole at the origin. The behavior of the other 
terms in the Born series is determined by the regularity 
of the corresponding y terms in the r variable. 

5. CONTRACTION OF THE POINCARE GROUP 

Since the Galilei group is a contraction of the 
Poincare group,ll we will show that it is possible to 
reach (4.7) from the corresponding formula of the 
relativistic case [see formula (9) of Ref. I]: 

where 
s + t + u = 4fl2 

by choosing a suitable limiting process. First we recall 
some machinery given in Ref. II. If Pil and Mil v 

denote the usual generators of the Poincare group, 
the Lie algebra of the Galilei group is obtained by 
multiplying Pk and MOk by € and letting € tend to zero. 
As far as the irreducible unitary representations of 
the Poincare group are concerned, if m2 > 0 one 
obtains the corresponding representations of the 
Galilei group by taking m2 "'" €-4, whereas if m2 < 0 
one takes m2 "'" c 2• 

Formula (5.1) is a partial-wave expansion performed 
by using the little group of a spacelike vector, that is 
0(2,1). Its Lie algebra is generated by MOl' M 02 ' 

M 12 • In the representations appearing in (5.1), the 
eigenvalues of the Casimir operator Mi2 - M~I - M~2 
are given by -(a2 + t). Since, in the contraction, 
€MOk is chosen to have a limit as € -->- 0, it follows that 
a must behave like c l • Therefore, in order to contract 

10 A. Klein and C. Zemach, Ann. Phys. (N.Y.) 7,440 (1959). 
11 E. Inonii and E. P. Wigner, Proc. Natl. Acad. Sci. (US) 

39,510 (1953). 
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(5.1), one has to consider 

lim P -i+w./£) (1 + 2 2U€2 2) 
£-+0 € t - 4,u 

which is equal to12 

Jo( A Ip1 ~ k 2 1
). 

We remark that in this limit only the space com­
ponents survive in u. As a result, we see that in the 
nonrelativistic limit (5.1) reduces to (4.6), interpreting 
A as r. 

6. CONCLUSIONS 

By partial-wave analysis in the crossed channel 
we have obtained a new parametrization of the two­
body elastic scattering matrix in the nonrelativistic 
case. Our results show that, in the same way as in 
relativistic scattering, the partial-wave analysis in the 
t channel is connected to the high-energy behavior in 
the direct channel for fixed t. It is interesting to note, 
however, that, for amplitudes tempered in the 
momenta, the high-energy behavior is given only by 
what corresponds to the background term in the 
relativistic theory. 

Finally it may turn out that the representation we 
have derived is a useful tool to study potential scat­
tering, for example, by inserting it into the Lippmann­
Schwinger equation. 
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APPENDIX 

For the sake of completeness we classify here the 
irreducible unitary representations of the two-sheeted 
covering group in two dimension E2 • 

We denote the generic element of E2 by (u, C), 
where u is a two-dimensional translation and ·C an 

12 This formula can be obtained in the same way as the analogous 
ones in G.N. Watson, Theory of Bessel Functions (Cambridge 
University Press, Cambridge, England, 1958), p. 156. 

element of SU2 which corresponds to a one-dimen­
sional rotation. The product law is 

(u1 , C1)(U2 , C2) = (u1 + R(C1)U2' C1C2), (AI) 

where R( C) is the rotation corresponding to C. 
Still following Mackey, 6 we associate to each 

vector x a Cx such that R( Cx)xo = x, where Xo is a 
fixed vector on the orbit of x, and we denote by 0 the 
angle between x and Xo. Then the infinite-dimensional 
irreducible unitary representations, labeled by Ixl = r 
and € = ±l, are of the form 

(Ur,«u, C)f)(Cx) = eiu.X D«C;lCCC-lx)f(CC-lX)' 

(A2) 

D± is an irreducible unitary representation of the 
little group of Xo which is simply the group of two 
elements {I, -I}. The functions f(Cx), at fixed r, 
must be considered L2 functions with respect to the 
measure dO. The finite-dimensional representations 
are one dimensional and they are labeled by an integer 
or a half-integer 

U(u, C)f = ein",f, 

where cp is the angle of rotation corresponding to C. 
The matrix elements of the infinite-dimensional 
representations are 

whereas those corresponding to ur
,- differ from the 

ones above at most by a sign. D21T is the Dirac 15 of 
period 27T. From (A3) it is clear that any function on 
the group E L2 can be expanded into the matrix 
elements of the infinite-dimensional irreducible unitary 
representations. More generally any tempered dis­
tribution has this expansion, since this amounts to 
performing a Fourier transform in u. Explicitly, the 
expansion has the form 

If f is a tempered distribution, (A4) automatically 
includes the finite-dimensional representations which 
correspond to dm(x) concentrated at the origin. 
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The method of developing exact power-series expansions for the partition function ZN and related 
thermodynamic functions for the Ising model valid below the critical point is generalized to include 
exchange interactions between first-, second-, and third-neighbor pairs. Expansions of the spontaneous 
magnetization Mo(T) and zero field susceptibility Xo(T) are derived through to sixth order of perturbation 
for the s.q. lattice, and through to fifth order of perturbation for the 6.'r, b.c.c., s.c., and f.c.c. lattices, 
when interactions J,S:S~ and J.S~S~ are present between first- and second-neighbor spins, respectively 
(second-neighbor model). These expansions have also been obtained for the case where interactions of 
equal magnitude (J t = J. = J 3 ) are present between first-, second-, and third-neighbor pairs (third-equiv­
alent-neighbor model); here expansions through to fifth order of perturbation are obtained for the s.q., 
6.'r, b.c.c., and s.c. lattices and through to fourth order for thef.c.c. lattice. The Pade approximant.pro­
cedure is employed to discuss the effects of an extended but finite range of interaction on the behavior 
of Mo(T) and Xo(T) for T ---+ T,- as characterized by the critical exponents fJ and y', respectively. For the 
second-equivalent-neighbor model lattices, it is found that 0.122 -:;, fJ -:;, 0.134 in two dimensions, and that 
0.308 -:;, fJ -:;, 0.328 in three dimensions; from which it is concluded that fJ remains unchanged from its 
value in the nearest-neighbor model. The corresponding limits for y' in three dimensions are 1.18 -:;, y' -:;, 
1.28; from this and the results for the b.c.c. lattice in particular, it is concluded that y' is probably ~ and 
hence the transition in XO is symmetrical about T, (y' = y). A repetition of this analysis for the third­
equivalent-neighbor model three-dimensional lattices shows a marked shift in the estimated range of fJ 
and y'; the results are 0.345 -:;, fJ -:;, 0.365, and 1.01 -:;, y' -:;, 1.14. In each of the above cases, the cor­
responding high-temperature (T> Tr) expansions of Xo(T) obtained previously have been analyzed to 
yield estimates of the critical exponent y. The over-all results and in particular the estimates of y for the 
s.q. and b.c.c. lattices suggest that this index is unaffected by extending the range of interaction, and 
that if y is a rational fraction then it is the same fraction for the n.n. model and second- and third­
equivalent neighbor models. Finally the high-temperature expansions of Z.\. in zero field, and of Xo(T) 
for the second-neighbor model are used to examine the dependence of the critical temperature To, the 
critical energy (Eoo - E,)/kT" and the critical entropy (S 00 - S,)/k on the relative strengths of J, and 
J. for values of J.IJ, in the range 0 to I. It is found that the variation of the critical point is well rep-
resented by 

where CJ. = J21J, and lies in the range 0 -:;, CJ. -:;, I; and 1~(0) is the critical temperature of the nearest­
neighbor model. The values of m, are 0.61, 2.47,0.84, 1.45, and 1.35 for the f.c.c., s.c., b.c.c., s.q., and 
6.'r lattices, respectively. All these calculations are compared with the corresponding results for the 
Heisenberg model. 

I. INTRODUCTION 

This is a paper about the Ising model of a ferro­
magnet in which the approximation usually adopted, 
of only including nearest neighbor (n.n.) interactions 
(J1StSj), is relaxed and interactions (J2S~Sn between 
next nearest neighbors (n.n.n.) are added into the 
Hamiltonian. We also discuss the inclusion of third­
neighbor interactions. The Hamiltonian for an Ising­
model lattice assembly of N spins, generalized to 
include interactions between 1st, 2nd, ... , nth neigh­
boring spins, may be put in the form 

n J.V 

Je = - I2Jr I 4S~S~ - mH I 2S~. (1) 
r~l <r> i~l 

In Eq. (1), S: is the spin variable associated with the 

ith lattice site, J r is the exchange integral between rth 
neighbors, H is the external magnetic field, m is the 
magnetic moment on each site, and I<r> denotes the 
summation over all pairs of rth neighbors. 

Recent years have seen a resurgence of interest in 
the Ising model and, although an exact solution for 
the three-dimensional nearest neighbor assemblies is 
still lacking, very successful efforts have been made 
towards elucidating their equilibrium behavior. The 
importance of the Ising model lies in that it represents 
in semi-classical terms the simplest model of a strongly 
interacting many-body system and is particularly 
useful in formulating the short-range interactions 
which are responsible for a variety of cooperative 
effects, where attention is focused on the phenomena 

1271 
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which occur very near critical points. Present interest 
in the theory of phase transitions is centered mainly 
on seeking a physical basis for the obviously similar 
nature of critical-point behavior in apparently very 
different types of phase separations. In this the Ising 
model is very useful, since it can be adopted as a 
model for such different phenomena as order-disorder 
phenomena in binary alloys, liquid-vapor condensa­
tion, and ferromagnetic and antiferromagnetic order­
ing processes. The effects of extending the range of 
interaction beyond nearest neighbors on these 
phenomena has been largely neglected in the literature, 
and it is hoped that the present publication will help 
in filling this gap. The reader who is uninterested in 
methodological detail can find a review of the results 
that have been obtained in the paper, together with 
the main interpretative points, by skipping to Sec. IX. 

The literature on the Ising model is extensively 
reviewed; for an introduction to the general mathe­
matical problems of approximate theories, exact 
treatments, and asymptotic methods, reference should 
be made to reviews by Newell and Montroll,1 Domb,2 
Montroll,3 Brout,4 and Baker.5 General interpretive 
reviews of critical-point phenomena have been 
given by Kadanoff,6 Fisher, 7 and Domb and Miedema.8 

A historical review has recently been compiled by 
Brush.9 Previous work specifically concerned with 
extending the range of interaction has been done by 
Hill,lO Guggenheim and McGlashan,ll Rushbrooke 
and Ursell,12 Domb and Potts,13 Domb and Dalton,14 
DaIton,15 Yaks, Larkin, and Ovchinnikov,16 Baker,17 
Kac and Helfand,18 Hiley and Joyce,19 and Joyce. 20 

1 G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 352 
(1953). 

2 C. Domb, Advan. Phys. 9, Nos. 34, 35 (1960). 
3 E. W. Montroll, Applied Combinatorial Mathematics, E. F. 

Beckenback, Ed. (John Wiley & Sons, Inc., New York, 1964), 
Chap. 4. 

4 R. Brout, Phase Transitions (W. A. Benjamin Inc., New York, 
1965). 

5 G. A. Baker, Jr., Advan. Theoret. Phys. 1, 1 (1965). 
6 L. P. Kadanoff et al.,Rev. Mod. Phys. 39, 395 (1967). 
7 M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967). 
8 C. Domb and A. R. Miedema, Proc. Low Temp. Phys. 4, 

Chap. 4 (1964). 
• S. G. Brush, Rev. Mod. Phys. 39, 883 (1967). 

10 T. L. Hill, J. Chern. Phys. 18, 988 (1950). 
11 E. A. Guggenheim and M. L. McGlashan, Trans. Faraday 

Soc. 47, 929 (1951). 
12 G. S. RlIshbrooke and H. D. Ursell, Proc. Cambridge Phil. 

Soc. 44, 263 (1948). 
13 C. Domb and R. B. Potts, Proc. Roy. Soc. (London) A2tO, 

125 (1951). 
14 C. Domb and N. W. Dalton, Proc. Phys. Soc. (London) 89, 

859 (1966). 
15 N. W. Dalton, Proc. Phys. Soc. (London) 89, 659 (1966). 
,. Y. G. Yaks, A. I. Larkin, and Yu. N. Ovchinnikov, Zh. Eksp. 

Teor. Fiz. 49, 1180 (1965) [Sov. Phys.-JETP 22, 820 (1966)]. 
17 G. A. Baker, Jr., Phys. Rev. 122,1477(1961); 130,1406 (1963). 
18 M. Kac and E. Helfand, J. Math. Phys. 4, 1078 (1963). 
19 B. J. Hiley and G. S. Joyce, Proc. Phys. Soc. (London) 85, 493 

(1965). 
20 G. S. Joyce, Phys. Rev. 146, 349 (1966). 

Hill considered the effects of n.n.n. interactions in 
monolayers on a simple quadratic lattice using. the 
quasichemical approximation, and Guggenheim and 
McGlashan extended the work to a treatment of 
regular mixtures for the s.c. and b.c.c. lattices. Rush­
brooke and Ursell considered some of the properties 
of one-dimensional assemblies with any finite range 
of interaction, and Domb and Potts included n.n.n. 
interactions in two-dimensional lattices by developing 
exact series expansions for the partition function 
below the critical point. Yaks et al. have recently 
obtained an exact solution for the zero-field partition 
function and magnetization ofthes.q.lattice with one­
half of the n.n.n. interaction present. 

Domb and Dalton have considered the critical 
properties such as the critical point, critical energy, 
and critical entropy of the second and third equivalent 
neighbor Ising-model lattices (see below) and have 
given estimates of asymptotic behavior for large co­
ordination numbers. Dalton has given the high 
temperature expansions of the zero-field partition 
function and zero-field susceptibility for the second 
neighbor model (see below), valid for general spin. 
Baker, and Kac and Helfand have considered in­
finitely long-range forces of the type yJe-yr for one­
and two-dimensional lattices, and an Ising model with 
interactions of the type l/rd+<T, where d is the dimen­
sionality and (J > 0, has been discussed by Hiley and 
Joyce. Finally Joyce has given' a treatment of the 
spherical model with l/yd+<T type interactions. 

All the existing mathematical techniques which 
enable the two-dimensional n.n. lattices to be solved 
exactly in zero field fail on the introduction of n.n.n. 
interactions, where the lattices become nonplanar. 
Consequently, the problem is effectively elevated to the 
difficulty of the 3-dimensional n.n. assemblies, and it 
is of interest to obtain the effect of this on critical­
point phenomena, where dimensionality is considered 
to be of such importance. At the present time, the 
only models where the effect of n.n.n. interactions can 
be traced exactly are the linear loop of N spins, and 
Fisher's two-dimensional superexchange model of an 
anti ferromagnet. 21 

In this paper we discuss both two- and three­
dimensional assemblies, and the mathematical ap­
proach is one of developing series expansions for the 
partition function and related thermodynamic func­
tions in regions above and below the critical tempera­
ture. It has by now been amply demonstrated that in 
the absence of any exact treatments the series­
expansion approach is the only method which is 

21 M. E. Fisher, Proc. Roy. Soc. (London) A254, 66 (1959); A256, 
502 (1960). 
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powerful enough to yield an accurate account of the 
critical region. The presentation here is in terms of 
the Ising ferromagnet with (1) as the Hamiltonian 
and S = t, but much of the material, such as the 
configurational data and the conclusions on critical­
point behavior)can be carried over to other problems 
such as binary alloys, absorbed monolayers, anti­
ferromagnets, and the lattice gas model of Yang and 
Lee.22 

The success of the series-expansion approach 
depends entirely on being able to extrapolate the 
thermodynamic functions to their singularities, and 
this in turn depends on how quickly the terms in the 
series settle down to a steady behavior. Previous work 
by the authors23 on similar expansions for the 
Heisenberg model has shown that in many cases the 
lattices of large coordination number possess 
expansions which appear to settle down more rapidly 
than those of smaller coordination numbers. By 
introducing higher-order interactions, we can effec­
tively increase the coordination numbers by equating 
the magnitudes of all interactions present; this model 
is known as the equivalent neighbor model. Thus, 
for example, the f.c.c. lattice with first, second, and 
third equal neighbor interactions has a coordination 
number of 42 compared with 12 for the n.n. model. 
It can be hoped, therefore, that the expansions for 
the equivalent neighbor model lattices will very 
quickly settle down to a smooth behavior from 
which extrapolations to critical behavior can be made. 
There is, of course, no sound basis for assuming 
that the partition function is uniformly convergent in 
the range of interaction, and although initial irregu­
larities in the expansion coefficients can be removed 
by extending the range of interaction, a more rapid 
convergence is not assured. 

In this paper we extensively analyze the series 
expansions of the equivalent neighbor model. The 
notation for the equivalent neighbor model lattices 
is as follows: A lattice L with n equivalent neighbor 
interactions present is denoted by L(l, 2, ... , n) and 
will be referred to as the "nth equivalent neighbor 
model." Where we specifically wish to discuss the 
effects of n.n.n. interactions we refer to "the second 
neighbor model." The techniques used in this paper 
in extrapolating the expansions are the ratio methods 
of Domb and Sykes,24 and the Pade-approximant 
methods introduced to these problems by Baker.5 

Considerable experimental interest is attached to 
studying the effects oflonger-range interactions on the 

22 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404, 410 (1952). 
23 N. W. Dalton and D. W. Wood, Phys. Rev. 138, A779 (1965). 
2. C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961). 

thermodynamic functions and critical parameters, 
since here the effects are often too large to be ignored 
when detailed comparisons between theory and 
experiment are made. This has been clearly demon­
strated by several authors in the case of the Heisenberg 
model, which provides a more realistic basis for such 
comparisons in magnetic work. Of the experimental 
work where the Ising model seems to be the appro­
priate model, one may mention the cobalt tuton salts 
such as CoK2(S04)2'6H20 discussed by Domb and 
Miedema,S and the recent work on CoCs3CIs and 
CoCs3Brs by the Leiden group.2S.26 References to the 
recent work on fluids and binary alloys can be found 
in Fisher's review article. 

The plan of the paper is as follows. In Sec. II the 
theory of obtaining the low-temperature (T S Tc) 
perturbation expansions of the partition function with 
up to nth neigh,bor interactions present is outlined, 
and the expansions for the second neighbor model are 
obtained up to the fifth order of approximation. 
These expansions are also obtained for the L(I, 2), 
and L(l, 2, 3) lattices. All the low-temperature 
expansions are collected together in Appendices A 
and B. In Sec. III some of the combinatorial problems 
associated with determining the low-temperature 
lattice constants for configurations on lattices with 
nonequivalent bonds are described. The lattice 
constants of all configurations up to 5 spins are listed 
in Appendix C for the L(l, 2) and L(l, 2, 3) lattices. 
Pade-approximant methods are employed to analyze 
the low-temperature expansion of the equivalent 
neighbor model lattices in Sec. IV. Of primary 
interest are the critical exponents P and y' of the zero­
field magnetization Mo, and zero-field susceptibility 
Xo, respectively, and Pade-approximant techniques of 
previous authors are employed to find estimates of 
these exponents for the L(1, 2) and L(I, 2, 3) lattices. 

The high-temperature expansions (T> Tc) of the 
zero-field partition function and zero-field suscepti­
bility are recalled in Sec. V; and the corresponding 
coefficients for the second neighbor model lattices are 
given in general form in Appendix D. In Sec. VI the 
variation of the critical point with the strength of the 
n.n.n. interactions is discussed, and the results are 
compared with the corresponding behavior of the 
Heisenberg model 3-dimensional lattices. The high­
temperature approach of XO to the critical region is 
considered in Sec. VII for the second and third 
equivalent neighbor model series, and estimates of 
the critical exponent yare given. Here both ratio 

25 K. W. Mess, E. Lagendijk, D. A. Curtis, and W. J. Huiskamp. 
Physica 33, 555 (1967). 

26 R. F. Wielinga, H. W. J. Biote, J. A. Roest, and W.J. Huiskamp, 
Physica 33, 1234 (1967). 
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methods and Pade-approximant methods are used. 
Finally, in Sec. VIn the variation of the critical energy 
and entropy with the magnitude of the n.n.n. inter­
actions is discussed; estimates of these parameters are 
given for the second neighbor model lattices; and 
compared with the corresponding values for the 
Heisenberg model. 

II. LOW-TEMPERATURE EXPANSIONS 

The problems discussed in this section are those 
related to obtaining a low-temperature (T:::;:; To) 
series expansion for the partition function Z N of the 
Ising ferromagnet. The procedure which naturally 
suggests itself is one of factorizing out of the partition 
function the ground-state energy Eo, where all the 
spins are aligned parallel, and deriving the contribu­
tions to Z N from perturbations on Eo obtained by 
overturning successive numbers of spins. For the case 
in which only one exchange parameter J1 (n.n.) is 
involved, this method has been considerably developed 
by Domb,27 Sykes,28 Domb and Hiley29; and Sykes, 
Essam, and Gaunt.30 Previous consideration to 
extending the problem to include two exchange 
parameters J1 and J2 (n.n., and n.n.n. interactions) has 
been given by Domb and Potts13 (for two-dimensional 
lattices) and by Sykes28 ; however, these authors did 
not proceed beyond the fourth order of perturbation 
(see below). 

Consider an Ising-model assembly of N spins with 
(1) as the Hamiltonian. The partition function is 
given by 

ZN(H, K1, K2,"', Kn) 

= s~~! [U exp (Kr ~ s~s~) ] exp (L i~ 2S~), (2) 

where the first summation is over a total of 2s spin 
configurations of the assembly, and 

Kr = 2fr/kT and L = mH/kT. (3) 

Consider now the excited states E s , which can result 
from s overturned spins on the lattice; for a given s 
the levels Es depend on the relative positions taken by 
the overturned spins. For example, if two of the s 
spins are rth neighbors to each other the contribution 
to E. is reduced by 2fr' relative to that configuration 
where the two spins are separated beyond the largest 
interaction range (nth neighbors). In a configuration 

27 C. Domb, Proc. Roy. Soc. (London) 199A, 199 (1949). 
28 M. F. Sykes, Thesis, Oxford University, 1956. 
2. C. Domb and B. J. Hiley, Proc. Roy. Soc. (London) A268, 506 

(1962). 
30 M. F. Sykes, J. W. Essam, and D. S. Gaunt, J. Math. Phys. 

6, 283 (1965). 

of s overturned spins, let there be br which are rth 
neighbors (r = 1, 2, ... ,n), and let qr be the total 
number of rth neighbors of any particular spin (the 
rth neighbor coordination number); then the total 
number of rth neighbor pairs is Nqr/2 and the total 
number of antiparallel rth neighbor pairs is sq, - 2br. 
The sum over rth neighbor pairs in (1) becomes 

and 
N 

2 L S~ = N - 2s. (5) 
i~1 

Combining (2), (4), and (5), we obtain 

ZN = [~ (t{ U~T'/2-bT)flsJ [fl-NI2 (D u;Nq'/S) 1 
(6) 

where Ur = exp (-4K.,.) , fl = exp (-2L), and Ls is 
the summation over all configurations of s overturned 
spins (s = 1, 2, ... , N). We can group the expansion 
(6) as a series in ascending powers of fl with coefficients 
which are polynomials in U1 , UZ , ••• , Un; hence we 
write 

ZN = {fl-NI2 ft u;NQr/8}Ax (U 1 , U2, ... , Un' fl), (7) 

where 
N 

A N (U 1 , U2' ... , Un ,fl) = L fZ:(u 1 , U .. , ... , Un)flS 
s~o 

(8) 

and the polynomials flj (u1, U2, ... , un) are of degree 
:::;:; qrs/2 in Ur. Direct evaluation of these "low 
temperature" polynomials soon becomes impracti­
cable for large s, all the more so with a large number 
of parameters Ur • With one parameter the labor 
becomes prohibitive for s > 9, and for two parameters 
the work is tedious at s = 4. We illustrate here the 
procedure for the second neighbor model (taking 
U1 = U and U2 = v) by obtaining the first three 
polynomials for the f.c.c. lattice (ql = 12, q2 = 6). 
The illustrations also serve to introduce the notation 
for the configurational data in Appendix B. All the 
spin configurations which are referred to explicitly 
below are listed in Fig. 1. 

A spin configuration of s overturned spins is 
represented by a linear graph G of s points, where any 
spins connected by a n.n. lattice spacing are drawn 
as C(2, 1) in Fig. 1, and those separated by a n.n.n. 
lattice spacing are represented by C1(2, 1). Spins 
which are not n.n. or n.n.n. are unconnected and 
represented by S(2, 1). We use [G]N to denote the 
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I I • • 
C(2,1> C,(2,1) 5(2,1) 

~ ~ ~ lA 1\ A A I. I. • • • 
C(3,1) C,(:3.1) Ca(3.1) C,(3 .• 1 ) C(3.2) CP,2) C,,(3.2) 5 (3,1) 5,(3,1) 5(3,2) 

~ t21 D t21 N ® 
C(4.1) C(4,2) C(4.3) C,(4,2) C(4,4) C(5.5) 

FIG. 1. The spin configurations which are referred to explicitly in Secs. 2 and 3. Here C(x, y) and S(x, y) are connected and separated 
configurations of x vertices and of topological type y respectively, and are examples of configurations occurring on a n.n. or an equivalent 
neighbor model lattice. The configurations Ca(x, y) or Sa(x, y) are examples of graphs occurring in the second neighbor model where et: 
is the number of bonds connecting n.n.n. lattice points. 

number of distinct separated graphs of type G, which 
can occur on a given lattice, and N[ G] denotes the 
number of connected graphs of type G. The low­
temperature polynomials can be written in the form 

it; = ~s [G]NW(G) + N ~s [G]W(G), (9) 
(0) (0) 

where the first summation includes all separated 
graphs of s points, and the second summation 
includes all connected graphs of s points. The weight 
of each graph W( G) is simply uqls/2-blvq2S/2-b •. Consider 
If; the only graphs for s = 2 are [S(2, 1)1s, 
N[C(2, 1)], and N[C1(2, 1)], thus 

it; = [S(2, 1)l",u
q1

v
q2 + N[C(2, 1)] 

X uQl-1vq2 + N[C I (2, 1)]uq1 v
q
·-I

• (10) 

Continuing in this manner we obtain/~(u, v), which 
is 

If = [S(3~ 2)lNu3Ql/2v3q2/2 + [S(3, 1)J.yU3Ql/2-lv3Q2/2 

+ [SI(3, 1)]Nu3Qi/2v3Q2/2-1 + N[C(3, 2)] 

X u3Ql/2-2v3Q2/2 + N[C
I
(3, 2)]U3Ql/2-lv3Q./2-1 

+ N[C2(3, 2)]U3Ql/2v3Q2/2-2 + N[C(3, 1)] 

X u3QI/2-3v3Q./2 + N[C
I
(3, 1)]U3Qi/2-2v3Q2/2-1 

+ N[C2(3, 1)]u3QI/2-1v3Q2/2-2 

+ N[C3(3, 1)]U3Ql/2v3Q2/2-3. (11) 

Following Domb2 we obtain the partition function 
per spin Z by putting N = 1 in (7) and (9), and log Z 
is equal to the coefficient of N in (7). In the expansion 
of Z, (8) is written in the form 

N 

A(ul , u 2 , •.• , Un' fl) = .2 f'(u 1 , U2 , •.• , Un)fl" 
s~o 

and ( 12) 

00 

log A(ul , U2, .•• , Un' fl) = I g.(u l , U2 , .•• , Un)flS
, 

s~1 

(13) 

where Is = 1~~1, and g s is the coefficient of N in I~' . 
The direct enumeration and counting of independent 
occurrences of the low-temperature config~rations 

soon becomes complicated by the very rapid increase 
in the number of diagrams contributing to I.(u, v). 

This problem can be partially overcome by employ­
ing the transformation between the low-tempera­
ture and high-temperature developments of the Ising 
model, which was discovered by Domb,27 and sub­
sequently developed by Wakefield31 and Sykes.28 

In the case of the second neighbor model, the trans­
formation is such that the expansion (12) can be 
written in the form 

00 

= ~ Ts,tCfl)(1 - u)'(1 - vY/(l + fl)2(s+t)-\ (14) 
s+I~O 

where 
2(s+t) 

Ts,tCfl) = I a!,tflv (15) 
V~O 

and is a symmetric polynomial of degree::;; 2(s + t) 
in fl. From (14) we readily obtain 

00 

In,q(l, l)fl" = (-l)p+ap! q! Tp.ip)/(l + fl)2(P+aH, 
o 

where 
(16) 

(17) 

The symmetric polynomials (15) are known as the 
high-temperature polynomials, and the set of 

Hn + l)(n + 2) TIJ.ifl) (p + q = t, t = 0, 1,2, ... ,n) 

31 A. J. Wakefield, Proc. Cambridge Phil. Soc. 47, 419 (1952). 
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can be obtained by equating the coefficients of ftB in 
(16) and solving the resulting ten + l)(n + 2) sets of 
s simultaneous equations 

P"q = AP,qaP.q (p + q = s, s = 0, 1,2, ... , n), 

(IS) 

where FP.q and aP.q are the column vectors 

and 

respectively, and AM is the matrix obtained on 
equating coefficients in (16). Since 'PP.q(ft) is a sym­
metric polynomial of degree:::;; 2(P + q), Eqs. (1S) 
suffice to determine the polynomial completely. 

Having determined the set of polynomials 'PP.q(ft) 
up to order p + q = n, we can use them to partially 
determine the low-temperature polynomial/n+1(u, v), 
where the part to be derived is arbitrary, and hence 
can be chosen to coincide with that part which is 
most difficult to evaluate directly; namely, the contri­
bution from separated configurations. Using (16) and 
the Hn + l)(n + 2) polynomials 'Pv.aCft) (P + q = n), 
we can obtain each of the Hn + l)(n + 2) partial 
derivatives/~iql(l, 1) (P + q = t, t = 0, 1,2,'" n); 
consequently, if all but Hn + 1 )(n + 2) of the coeffi­
cients in /n+I(U, v) are obtained by direct counting 
methods (see Sec. lIT), the remaining coefficients can 
be obtained by setting up a system of Hn + l)(n + 2) 
simultaneous equations. This implies that only the 
configuration of s + 1 vertices and ~ s + 1 lines need 
be enumerated directly. Thus we may write 

where Fn+1(u, v) is obtained by direct counting and 
Gn+l(u, v) contains Hn + l)(n + 2) unknown coeffi­
cients. The Hn + l)(n + 2) simultaneous equations 
are obtained from (19) by differentiating p times with 
respect to U and q times with respect to v, whence we 
obtain 

G~'t"l(l, 1) =f~'t"1(1, 1) - F~~I(1, 1). (20) 

The solution of (20) completes the derivation of 
fn+l(U, u). 

The technique is clearly illustrated by the following 
outline of the derivation of /3(U, u) for the f.c.c. 
lattice given in (11). Direct counting yields 

from which we obtain 

'Po,o = 1, 'PI,O = -6ft, 'PO,1 = -3ft, 

'P2,O = 15ft - 21ft2 + 15ft3, 

'PI,1 = ISft - ISft2 + lSft3, 

'PO,2 = 3ft - 6ft2 + 3ft3. 

(22) 

The only configurations contributing to F3(u, v) are 

N[C(3, 1)] = SN, N[C1(3, 1)] = 12N, 

N[C2(3, 1)] = 0, N[Ca(3, 1)] = 0, 

which correspond to the terms SU15V9, 12u16V8, 

OUI7U7, and OUl5V6 respectively in /a(u, u), which can 
now be represented in the matrix form 

Ul8 Ul7 Ul6 U15 

/a(u, v) = ° 2 3 +- (n.n.) 

v9 

° Xl X2 Xa S 
v8 1 X4 X5 12 

(23) 
v7 2 X6 ° u6 3 ° i 

(n.n.n.) 

= XlV
9

U
l8 + X2V

9
U

l7 + XaV
9

U
l6 + X4V8

U
l8 

+ X5V8Ul7 + X6V7Ul8 + SV9Ul5 + 12v8U16. 

(24) 

Using (16) and (20)-(22), we can set up six simultane­
ous equations to obtain 

/3(U, v) = 142v9Ul8 - 162v9ul7 + 30V9Ul6 - 93v8UI8 

+ 4SV8
U

l7 + 15v7ul8 + SV9
U l5 + 12v8u16 , 

(25) 

from which we can derive the high-temperature 
polynomials 'Pa,o, 'Pl.2, 'P2,1, and 'PO,3' and continue 
the process for /iu, v). 

The technique above has been used to obtain the 
high-temperature and low-temperature polynomials 
for the second neighbor model up to the order of 
five overturned spins for the S.c" b.c.c., f.c.c" and 
triangular (~'r) lattices; for the s.q. lattice the poly­
nomials up to sixth order have been derived. These 
polynomials are listed in Appendix A, wpere the low­
temperature polynomials are given in the form gs(u, v) 
of Eq. (13), which is the form needed to derive the 
thermodynamic functions. By setting u = v (11 = J2), 

we obtain the low-temperature polynomials for the 
second equivalent neighbor model lattices with co­
ordination number q = ql + q2' The calculations 
have also been done for the third equivalent neighbor 
model lattices (11 = J2 = Ja), where again the poly­
nomials up to fifth order have been derived for the 
above lattices except in the case of the f.c.c. lattice, 
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where only the first four polynomials have been 
obtained. These results are tabulated in Appendix B. 

III. ENUMERATIONS OF LOW-TEMPERATURE 
CONFIGURATIONS 

A review of the techniques employed to obtain the 
lattice constants N[G] and [G]N of both high-tem­
perature and low-temperature configurations has 
been given by Domb.2 The only new feature introduced 
into these techniques by the inclusion of second or 
higher neighbor interactions is the occurrence of the 
various types of nonequivalent bonds. For the low­
temperature configurations above there is also the 
added restraint that no two spins, which are not 
connected by a bond, can be first, second, ... , or rth 
neighbors. For example, care is needed to ensure that 
all the space types (see below) of C(4,4) are not 
confused with C1(4, 2) when first and second neighbor 
interactions are present. 

The most difficult configurations to count are 
those containing separated components; the extreme 
case at the nth order of approximation being the n 
separated spins. The symbolic method of Domb and 
Sykes,2.28 where the separated configurations can be 
reduced in two stages to involve only the counting of 
multiply connected configurations, can be readily 
extended to include higher-order interactions. For 
example, with first and second neighbor interactions 
present, the symbolic equations for [S(2, l)ls and 
[S(3, 2)]N become 

[S(2, 1)]N = N(N - 1)/2 - N(ql + q2)/2, (26) 
and 

[S(3, 2)]N = N(N - 1)(N - 2)/6 + N(ql + q2) 

X (ql + q2 + 1 - N)/2 - N[C(3, 1)] 

- N[C1(3, 1)] - N[C2(3, 1)] 
- N[C3(3, 1)], (27) 

where the counting of three separated spins is reduced 
to the counting of the four possible triangles made up 
of first and second neighbor bonds. The effect of 
having two types of bond greatly increases the 
number of topologically distinct, multiply connected 
configurations, of which the lattice constants N[G] 
must be determined directly by examining the lattice 
and using Wakefield's31 method of space types. The 
number of space types of a given configuration is 
simply the number of orientations it can assume on 
the lattice, which are not related through rotational 
or translational symmetry. The contribution of each 
space type to N[G] is the number of rotationally 
distinct orientations it can adopt on the lattice (see 
Fig. 1). Again the presence of two or more types of 

bond increases the number of space types of a given 
configuration. 

If we ignore the finer details of longer-range inter­
actions and successively include 1st, 2nd,'" , nth 
neighbor interactions of equal magnitude, we obtain 
the equivalent neighbor model, where all bonds are 
equivalent. The enumeration of configurations is now 
the same as for the n.n. model, and the counting of 
configurations is in effect the same as for the n.n. 
model with the lattice having a larger coordination 
number. As examples, we quote the following results 
for the f.c.c.(1), f.c.c.O, 2) and f.c.c.(I, 2, 3) lattices. 

f.c.c.(l), q = 12, N[C(3, 1)] = 8N, 

N[C(4, 3)] = 3N, N[C(4, 2)] = 24N 

N[C(4, 1)] = 2N, 

f.c.c.(l, 2), q = 18, 

N[C(4, 3)] = 9N, 

N[C(4, 1)] = 17N, 

N[C(3, 1)] = 20N, 

N[C(4,2)] = 84N, 

(28) 

f.c.c.(l, 2, 3), q = 42, N[C(3, 1)] = 124N, 

N[C(4, 3») = 105N, N[C(4,2)] = 1320N, 

N[C(4, 1)] = 333N. 

In Fig. 2 we list the different space types of the 
configuration C(5, 5), containing first and second 
neighbor bonds, which can occur on the b.c.c. lattice. 
The contributions of each space type to the lattice 
constant for the second equivalent neighbor model 
are shown in parenthesis, and we obtain 

N[C(5, 5)] = 156N. (29) 

The configurational data relating to diagrams 
containing nonequivalent bonds is too extensive to 
be included here; consequently, in Appendix C we 
list only the lattice constants of the equivalent 
neighbor model configurations. All the configurations 

~12N) (48N) 

L"\Z\. (24N) ~ (.8N) 

~2'N) 
FIG. 2. The space types containing n.n. and n.n.n. bonds. which 

contribute to the lattice constant of Eq. (29). 
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of up to 5 separated spins are listed for the second 
and third equivalent neighbor model lattices except 
for the f.c.c.(l, 2, 3), where the configurations are 
only tabulated up to four spins. 

IV. THE LOW-TEMPERATURE CRITICAL­
POINT BEMA VIOR OF THE ZERO-FIELD 
MAGNETIZATION AND SUSCEPTffiILITY 

From the low-temperature polynomials given in 
Appendices A and B, and the thermodynamic 
relations 

o 
Mo/Nm = 1 - 2 0/110gA(u, V,/1)!I'=l (30) 

and 

kTXo/4Nm2 = io 

o 02 

= 0/1 log A(u, V,/1)!I'=l + 0/12 log A(u, V,/1)!I'=l, (31) 

we can construct the low-temperature (T < Tc) 
series expansions for the zero-field magnetization Mo 
and susceptibility Xo. Our purpose here is to examine 
in detail the critical-point behavior (T -- T;) of 
these two functions. We are primarily interested in 
the detection of any effects of extending the range of 
interaction on the behavior near the critical point. 
For this purpose we have elected to examine the 

TABLE I. The zero-field magnetization series for the L(l,2) 
lattices, Mo = 1 - 2U·;2 + u·-1 :E:'o Q,.un• 

f.c.c.(1, 2) s.c.(l,2) b.c.c.(I, 2) ~(I, 2) s.q.(l, 2) 
n q= 18 q = 18 q= 14 q= 12 q=8 

an an a,. a,. an 

0 -36 -36 -28 -24 -16 
I 38 38 30 26 18 
2 0 0 0 0 -24 
3 0 0 0 0 -104 
4 0 0 0 -60 248 
5 0 0 -72 -216 -516 
6 0 0 -330 +684 -328 
7 -120 -120 960 -450 +2292 
8 -558 -558 -560 -264 -7200 
9 1584 1584 -48 -888 +4676 

10 -908 -908 -336 -216 +14120 
11 0 0 -1560 10602 
12 0 0 -1240 -18360 
13 -136 -104 19980 3354 
14 -672 -768 -28980 -3528 
15 -3432 -3432 8926 +29064 
16 -3208 -2888 -7296 +93900 
17 43908 43428 -13128 
18 -60564 -60216 54028 
19 23806 23542 271032 
20 -2310 -1530 -882804 
21 -6720 -7800 
22 -18532 -21760 
23 -43800 -36720 
24 146370 155370 
25 822848 785660 
26 -2445144 -2402604 
27 2187864 2163792 
28 -752650 -731476 

TABLE II. The low-temperature zero-field susceptibility series 
for the L(1. 2) lattices. XO = u·;2{1 + :E:'1 hnun}. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

f.c.c.(I, 2) 
q= 18 

h,. 

o 
o 
o 
o 
o 
o 
o 

36 
-38 

o 
o 
o 
o 
o 

180 
837 

-2376 
1362 

o 
o 

272 
1344 
6864 
6416 

-87816 
121158 

-47492 
5175 

16800 
46336 

109500 
-365745 

-2055824 
6115812 

-5456592 
1920365 

s.c.(l.2) 
q = 18 

hn 

o 
o 
o 
o 
o 
o 
o 

36 
-38 

o 
o 
o 
o 
o 

180 
837 

-2376 
1362 

o 
o 

208 
1536 
6864 
5176 

-86856 
120432 

-46864 
3825 

19500 
54400 
91800 

-388245 
-1963400 

6010182 
-5395656 

1859080 

b.c.c.(l.2) 
q= 14 

h,. 

o 
o 
o 
o 
o 

28 
-30 

o 
o 
o 

108 
495 

-1440 
840 
96 

672 
3120 
2480 

-39900 
58230 

-16552 
18258 
32964 

-134134 
-674556 
2216310 

~(l, 2) 
q= 12 

hn 

o 
o 
o 
o 

24 
-26 

o 
o 

90 
324 

-1026 
695 
528 

1176 
492 

-21009 
37572 

-4714 
9414 

-70128 
-230418 

s.q.(l,2) 
q=8 

hn 

o 
o 

16 
-18 

36 
160 

-340 
980 
808 

-3802 
16464 

-7175 
-25864 

equivalent neighbor model lattices, since it is to be 
expected that the finer details of the extended range 
(relative strengths) will be no more significant than 
their existence. The lattices which we have examined 
are the two- and three-dimensional second equivalent 
neighbor model lattices, and the b.c.c.(l, 2, 3) and 
s.c.(1, 2, 3) lattices. The expansions of Mo and io for 
these lattices are given in Tables I, II, and III. 

A slight extension of the configurational data in 
Appendix C is required to obtain the expansions in 
Tables I and II. First a small number of the lower-
order terms in gn+1(u, v) may contribute to the same 
order of approximation as the higher-order terms in 
gn(u, v) on setting the field equal to zero (/1 = 1). 
These "overlap" contributions arise from the most 
closely packed configurations in gn+1(u, v) and can be 
enumerated without much difficulty. On the other 
hand we can use this effect to advantage by partially 
evaluating!n+l(u, v) and extending the series expan-
sions. For example, the polynomialsg1(u, v) to gs(u, v) 
yield the series of Mo(u) on the b.c.c.(I, 2) lattice 
correct through to terms in U 28• The initial terms in 
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TABLE III. The series expansions of Mo and XO for the b.c.c.- and 
(1, 2, 3) and s.c.(l, 2, 3) lattices (see Tables I and II for the 

notation). (33) 

b.c.c.(1, 2, 3) s.c.(1, 2, 3) b.c.c.(I, 2, 3) s.c.(1, 2,3) 
Xo Mo q = 26 q = 26 q = 26 q = 26 n n hn h" an a" 

0 -52 -52 0 0 

1 54 54 0 0 11 
2 0 0 52 52 12 

10 0 0 -54 -54 13 
11 -264 -264 0 0 14 

12 -1158 -1158 396 396 i3 
13 3264 3264 1737 1737 24 
14 -1844 -1844 -4896 -4896 25 
15 0 0 2766 2766 26 

20 0 0 0 0 27 

21 -456 -536 0 0 32 
22 -2304 -2304 912 1072 33 
23 -10824 -10104 4608 4608 34 
24 -8232 -9512 21648 20208 35 
25 129972 130692 16464 19024 36 
26 -178008 -178008 -259944 -261384 37 
27 69854 69774 356016 356016 38 
28 0 0 -139708 -139548 39 
29 0 0 0 0 40 
30 -280 -560 0 0 41 
31 -2360 -1920 700 1400 42 
32 -8670 -12510 5900 4800 43 
33 -38440 -32920 21675 31275 44 
34 -87320 -81120 96100 82300 45 
35 -180000 -159120 218300 202800 46 
36 713670 600030 450000 397800 47 
37 3421240 3561480 -1784175 -1500075 48 

-8553100 -8903700 49 

!s(u, V) are obtained from configurations of six spins 
and 15, 14, 13, ... lines; for the b.c.c.(l, 2) lattice 
there are no six spin figures with 15 or 14 lines and 
only one of 13 lines, which contributes the term 3U29 

to !6(U, v). By enumerating the configurations of six 
spins and nine or more lines, and those of seven spins 
and 16 lines, the series for Mo may be extended to 
terms in U33 as recorded in Table I. Similar considera-
tions apply to the other series in Tables I and II. 

The series expansions of Mo and Xo for the n.n. 
model three-dimensional lattices have been examined 
by Baker,32 Essam and Fisher,33 Gaunt et al.,34 and 
Baker and Gaunt.35 Interest lies in seeking the 
critical point uc[= exp (-4J/kTJJ and the critical 
point exponents36 fJ and y', where 

MoCT),-...., D(Tc - T)Pk"'T,- (32) 

.2 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961). 
ss J. W. Essam and M. E. Fisher, J. Chern. Phys. 38, 802 (1963). 
• 4 D. S. Gaunt, M. E. Fisher, M. F. Sykes, and J. W. Essam, 

Phys. Rev. Letters 13, 713 (1964). 
s, G. A. Baker, Jr. and D. S. Gaunt, Phys. Rev. 155, 545 (1967). 
,. See Fisher's review for the notation on critical exponents. 

In (32) and (33), D and C are the amplitudes of the 
singularities at T = Tc; they represent slowly varying 
functions of temperature in the critical region. Using 
three basic Pade-approximant techniques37 (also 
employed by ourselves below) the latest figures for fJ 
and y' are given by Baker and Gaunt as 

and 

fJ 3 2 +0.003 5 

= O. 1 -0.006 ~ 16 

, 1 310 +0.030 1 5 
Y =. -0.050 ~ 16' 

(34) 

(35) 

In establishing these results Baker and Gaunt con­
sidered the low-temperature specific-heat exponent (J.', 
and the critical-isotherm exponent 15, and then 
employed the rigorous inequalities of Rushbrooke38 

and Griffiths.39 
We have analyzed the low-temperature series in 

Tables I, II, and III using Pade approximants and 
have employed the devices of Baker,32 and Essam and 
Fisher.33 First we have calculated some of the approxi­
mants for the series 

~ log Mo(u) '"'-' fJ/(u - uc) + ~ log D(u)lu .... uc- (36) 
du du 

and 

~logio'-"'" -y'/(u - uJ + ~log C(U)IU""HC-' 
du du 

(37) 

By selecting the appropriate poles of the approximants, 
and their corresponding residues, we obtain a sequence 
of estimates for uc , p, and y'. The results of these 
calculations for the second equivalent neighbor model 
lattices are shown in Tables IV and V; the correspond­
ing results for the b.c.c.(l, 2, 3) and s.c.(l, 2, 3) 
lattices are given in Table VI. The estimates contained 
in these Tables, and in all subsequent tables of this 
section, have been obtained from the sequence of 
[N, N] and [N, N ± 1] approximants. 4o Although the 
present series are longer than the corresponding n.n. 
series considered by Baker and Gaunt, we should not 
anticipate any greater accuracy in the results at this 
stage. The rate of convergence of the series appears 

37 See Refs. 5 and 33. 
38 G. S. Rushbrooke, J. Chern. Phys. 39,842 (1963) . 
3. R. B. Griffiths, Phys. Rev. Letters 14, 623 (1965). 
40 The notation for the [N, MJ approximant is the same as 

employed by Fisher in Ref. 7. 



                                                                                                                                    

TABLE IV. Pade approximant estimates of the critical temperatures u, and the critical exponents y' and fJ from d/du log Mo(u) and d/du log Xo(u) for the 
three-dimensional lattices with two equivalent neighbor interactions. 

f.c.c.(l, 2) s.c.(1,2) b.c.c.(1, 2) 
[M,N] [M,N] [M,N] 

Mo X. u. from u, from 
fJ y' M. X. u, from u, from 

fJ y' Mo Xo u, from u, from 
fJ y' 

Mo XO M. XO Mo X. 

16,16 11,11 0.7743 0.7971 0.3499 1.5651 16,16 11,11 0.7745 0.7975 0.3521 1.5699 10,10 6, 6 0.7023 0.7351 0.2709 1.5684 
16,17 11,12 0.7742 0.7971 0.3488 1.5649 16,17 11,12 0.7744 0.7964 0.3507 1.5553 10,11 6, 7 0.7344 1.5577 
17,16 12,11 0.7741 0.7971 0.3483 1.5649 17,16 12,11 0.7743 0.7959 0.3499 1.5464 11,10 7,6 0.7080 0.7338 0.3043 1.5481 
17,17 12,12 0.7742 0.7971 0:3493 1.5651 17,17 12,12 0.7744 0.7972 0.3514 1.5664 11,11 7, 7 0.7109 0.7351 0.3248 1.5687 
17,18 12,13 0.7739 0.7754 0.3463 1.1898 17,18 12,13 0.7759 1.1976 11, 12 7,8 0.7075 0.7464 0.2994 1.7262 

..... 18,17 13,12 0.7743 0.7994 0.3507 1.5932 18,17 13,12 0.7745 0.7792 0.3526 1.5914 12,11 8,7 0.7093 0.7367 0.3131 1.5887 tv 
00 18,18 13,13 0.7742 0.7771 0.3495 1.2249 18,18 13,13 0.7745 0.7776 0.3517 1.2304 12,12 8,8 0.7090 0.7334 0.3106 1.5483 0 

18,19 13,14 0.7742 0.7766 0.3492 1.2152 18,19 13,14 0.7744 0.7772 0.3512 1.2210 12,13 8,9 0.7090 0.7036 0.3106 1.1240 
19, 18 14,13 0.7742 0.7764 0.3491 1.2112 19,18 14,13 0.7744 0.7769 0.3505 1.2168 13,12 9,8 0.7090 0.7385 0.3106 1.6061 
19,19 14, 14 0.7742 0.7772 0.3497 1.2266 19, 19 14, 14 0.7747 0.7776 0.3538 1.2318 13,13 10,10 0.7090 0.7093 0.3106 1.2136 
19,20 14,15 0.7826 0.7753 0.3086 1.1874 1<J.,20 14,15 0.7745 0.7759 0.3520 1.1955 13,14 10,11 0.7082 0.7069 0.3038 1.1708 
20, 19 15,14 0.7745 0.7641 0.3520 0.8980 20, 19 15,14 0.7745 0.7622 0.3517 0.8407 14,13 11,10 0.7094 0.7002 0.3133 1.0266 
20,20 15,15 0.7740 0.7695 0.3474 1.0469 20,20 15,15 0.7746 0.7689 0.3532 1.0231 14,14 11,11 0.7088 0.7040 0.3088 1.1138 
20,21 15,16 0.7737 0.7699 0.3434 1.0580 20,21 15,16 0.7739 0.7685 0.3437 1.0113 14,15 11,12 0.7085 0.7041 0.3069 1.1151 
21,20 16,15 0.7729 0.7700 0.3308 1.0599 21,20 16,15 0.7765 0.7685 0.3621 1.0126 15, 14 12,11 0.7080 0.7041 0.3013 1.1152 
21,21 16. 16 0.7737 0.7708 0.3440 1.0875 21,21 16,16 0.7734 0.7687 0.3389 1.0170 15,15 12,12 0.7084 0.7040 0.3054 1.1138 
21,22 16,17 0.7737 0.7701 0.3434 1.0639 22,21 16,17 0.7726 0.7686 0.3245 1.0139 15,16 12,13 0.7081 0.7057 0.3022 1.1529 
22,21 17,16 0.7735 0.7702 0.3407 1.0652 21,22 17,16 0.7741 0.7686 0.3477 1.0143 16,15 0.7083 0.3045 
22,22 17,17 0.7740 0.7703 0.3473 1.0699 22,22 17,17 0.7685 0.7682 0.2237 1.0012 16,16 0.7083 0.3046 

17,18 0.7700 1.0604 17,18 0.7685 1.0132 
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TABLE V. Pade approximant estimates of the critical temperatures Uc and the critical exponents y' and ~ from djdu log Mo(u) 
and djdu log Xo(u) for the two-dimensional lattices with two equivalent neighbor interactions. 

[M,N) 
Mo XO 

8,8 
9,9 

10, to 
11,11 
11,12 
12, 11 
12,12 
12,13 

13,12 

13,13 

5, 5 
6,6 
7,7 
7,8 
8, 7 
8,8 
8,9 
9,8 
9,9 
9, 10 

to,9 
to,10 

D.(1,2) 

Uc Ue 
from Mo from XO 

0.6465 
0.6556 
0.6522 
0.6807 
0.6462 
0.6531 
0.6368 

{
0.6825 
0.6120 

(
0.6247 
0.7078 

{
0.6249 
0.7085 

0.6825 
0.7021 
0.6358 
0.6390 
0.6382 
0.6361 
0.6292 
0.6027 
0.6019 
0.6087 
0.6026 
0.6279 

~ 

0.2234 
0.2634 
0.2455 
0.3057 
0.2127 
0.2521 
0.1527 

(
0.2770 
0.0406 

{
0.0847 
0.2886 

{
0.0856 
0.2893 

y' 

1.5450 
1.7604 
1.0000 
1.0444 
1.0331 
1.0043 
0.9127 
0.5156 
0.5048 
0.6079 
0.5148 
0.9964 

to be largely determined by the extent of the con­
figurational information embedded in the expansion 
coefficients, and the n.n. model series for Mo and XO 
S0 far developed actually contain more information 
of this type. 

As expected, the results for the three-dimensional 
lattices in Tables IV and VI are much smoother than 
those for the two-dimensional lattices; this is due to 
the larger number of terms available. The estimates 
for the critical point Uc obtained from Mo and io 
appear to be converging to a common value for the 
three-dimensional lattices; the higher-order appro xi­
mants of these functions yield agreement to two 
significant figures. Independent estimates of the 
critical point J/kTc for the equivalent neighbor model 

[M,N) 
Mo XO 

4,4 
4,5 
5,4 
5,5 
5,6 
6,5 
6,6 
6, 7 
7,6 
7,7 
7,8 
8,7 

3,3 
3,4 
4,3 
4,4 
4,5 
5,4 
5,5 
5,6 
6,5 
6,6 

s.q.(l, 2) 

Uc Uc 
from Mo from Xo 

0.4670 
0.4730 
0.4772 
0.4801 
0.4759 
0.4778 
0.4740 
0.4801 
0.4661 
0.4699 
0.4694 
0.4695 

0.4164 
0.4682 
0.4438 
0.4358 
0.4330 
0.4320 
0,4351 

0.4408 
0.4106 

fJ 

0.1377 
0.1488 
0.1583 
0.1659 
0.1545 
0.1597 
0.1498 
0.1612 
0.1242 
0.1378 
0.1360 
0.1363 

y' 

0.7223 
1.3193 
0.9745 
0.8889 
0.8555 
0.8415 
0.8810 

0.9558 
0.8264 

lattices have been given by Domb and Dalton1,4 who 
used the high-temperature (T> Tc) susceptibility 
series as a basis for extrapolation. Extrapolations from 
above Tv, where the ratio methods of Domb and 
Sykes24 can be used, are generally more consistent in 
the estimates of the critical point than the corre­
sponding extrapolations from below To. In Table VII 
we list the most likely values of 2J/kTc and Uc to four 
significant figures. 

The results for the critical exponents fJ and y' of 
the two-dimensional lattices shown in Table V are too 
erratic to yield meaningful bounds; however, for the 
three-dimensional L( 1, 2) lattices, fJ appears to be 
settling down between 0.30 and 0.34, and y' between 
1.00 and 1.11. The estimates of y' in Table IV are 

TABLE VI. Pade approximant estimates of the critical temperatures lie and the critical exponents y' and fJ from 
d/dll(log Mo) and d/dll(log Xo) for the b.c.c.O, 2, 3) and s.c.(I, 2, 3) lattices. 

[M,N) 
Mo Xo 

24,24 
24,25 
25, 24 
25,25 
25,26 
26,25 
28,28 
28,29 
29,28 
29, 29 
29, 30 
30,29 
30,30 
30,31 
31,30 

19,19 
19, 20 
20, 19 
20,20 
20,21 
21,20 
21,21 
21,22 
22,21 
22,22 
22,23 
23,22 
23,23 
23,24 
24,23 
24,24 

b.c.c.(l, 2, 3) 

Uo Uc; 

from Mo from XO 

0.8444 
0.8442 
0.8436 
0.8438 
0.8440 

0.8483 
0.8442 

0.8440 
0.8441 
0.8468 
0.8445 
0.8443 
0.8413 

0.8580 
0.8610 
0.8579 
0.8619 
0.8473 
0.8632 
0.8476 
0.8474 
0.8465 
0.8479 
0.8471 
0.8341 
0.8401 
0.8396 
0.8397 
0.8400 

fJ 

0.3959 
0.3930 
0.3841 
0.3874 
0.3895 

0.4886 
0.3927 

0.3898 
0.3925 
0.4482 
0.3997 
0.3941 
0.3481 

1.4653 
1.5447 
1.4622 
1.5605 
1.2184 
1.5785 
1.2257 
1.2198 
1.1916 
1.2364 
1.2108 
0.7532 
0.9726 
0.9538 
0.9563 
0.9675 

[M,NJ 
Mo XO 

24,24 
24,25 
25,24 
25,25 
25,26 
26,25 
28, 28 
28,29 
29,28 
29, 29 
29, 30 
30,29 
30,30 
30, 31 
31,30 

19, ]9 
19,20 
20,19 
20.20 
20,21 
21,20 
21,21 
21,22 
22,21 
22, 22 
22, 23 
23,22 
23,23 
23, 24 
24,23 
24, 24 

s.c.(l, 2, 3) 

lie Uo 
from Mo from Xo 

0.8441 
0.8439 
0.8431 
0.8433 
0.8435 

0.8435 
0.8435 
0.8453 
0.8438 
0.8437 
0.8435 
0.8438 
0.8438 
0.8438 

0.8578 
0.86to 
0.8579 
0.8619 
0.8459 
0.8631 
0.8461 
0.8459 
0.8448 
0.8466 
0.8456 
0.8343 
0.8379 
0.8383 
0.8383 
0.8377 

fJ 

0.39]2 
0.3889 
0.3761 
0.3799 
0.3825 

0.3825 
0.3820 
0.4167 
0.3883 
0.3856 
0.3827 
0.3877 
0.3874 
0.3873 

y' 

1.4602 
1.5446 
1.4631 
1.5603 
1.1875 
1.5782 
1.1944 
1.1886 
1.1541 
1.2090 
1.1783 
0.7976 
0.9248 
0.9372 
0.9392 
0.9183 
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TABLE VII. Over-all best estimate of the critical points of the L(1, 2) and L(1, 2,3) lattices. 

Lattice f.c.c. (1, 2) b.c.c. (1, 2) 

U. 0.7727 0.7092 
2J/kTc 0.06445 0.08592 

Lattice f.c.c.(1, 2, 3) b.c.c.(1, 2, 3) 

Uc 0.9023 0.8423 
2J/kT. 0.0257 0.0429 

surprisingly consistent (more so than for the n.n. 
series) and also consistently lower than the value of 
11

5
6 suggested by Baker and Gaunt. The above 

figures are only an initial approximation to the bounds 
on f3 and y', and it is well known that the residues at 
the singularities of the approximants are extremely 
sensitive to the location of the pole. A variation of e: 
in Uc is usually amplified to 1Oe: in f3 and y'. For the 
s.c.(1, 2, 3) and b.c.c.(l, 2, 3) lattices the estimates of 
y' are less smooth but also consistently lower than 
11

5
6 ; however, the values of f3 are higher than those 

of the L(l, 2) lattices. 
We can hope for a sequence of improved estimates 

of f3 and y' if we have available independent estimates 
of Uc such as those in Table VII. The procedure is to 
evaluate the Pade approximants of 

and 

d 
(u - uc) -log Xo(u) 

du 

......, -y' + (u - tic) ~ log C(u)/" .... " (39) 
du ' 

at u = Uc ' We have obtained values of f3 and y' in this 
manner using the values of Uc in Table VII; the results 
for the two- and three-dimensional L(l , 2) lattices are 
shown in Table VIn, and those for the s.c. (1, 2, 3) 
and b.c.c.(l, 2, 3) lattices in Table IX. We expect the 
critical points in Table VII to be correct to within at 
most 3 parts in 104, and the fluctuations in fJ and y' 
resulting from this degree of uncertainty in Uc are 
approximately 4 parts in 103 throughout the Tables 
VIII and IX. 

In the case of the s.q.(l, 2) lattice there are six 
low-temperature polynomials available and the esti­
mates of fJ from the higher-order approximants 
suggest that the index is the same as the exact value 
of i on the n.n. model two-dimensional lattices. For 
the ~(1, 2) lattice, only five polynomials are available; 
consequently, we adopt the evidence from the 

s.c.(1,2) ~(1, 2) s.q.(1,2) 

0.7724 0.6349 0.4675 
0.06450 0.1136 0.1901 

s.c. (l, 2, 3) ~(1, 2, 3) s.q.(1, 2, 3) 

0.8413 0.7522 0.6351 
0.0432 0.0712 0.1135 

s.q. (1, 2) lattice and conclude that 

0.122 ~ f3 ~ 0.134 (40) 

for the two-dimensional L(1, 2) lattices, and is 
probably exactly = ! as in the n.n. model. The 
estimates of y' for the two-dimensional L(l, 2) 
lattices have not improved; there is stilI too much 
scatter to make any conclusion. The figures in Table 
VIn for the three-dimensional lattices certainly 
suggest that the index fJ is not affected by extending 
the range of interactions. We conclude that 

0.308 ~ fJ ~ 0.328, (41) 

which covers all the lattices and includes the effects 
of uncertainties in Uc ' The bounds in (41) are wider 
than those of Baker and Gaunt,35 but are similar to 
the earlier work of Essam and Fisher. 23 If indeed f3 is 
a rational fraction like 1

5
6 as suggested by these 

authors, then it would appear safe to conclude that 
the same rational fraction is valid for the L(I, 2) 
lattices. 

The results for y' of the b.c.c.(l, 2) lattices are very 
suggestive; the last four diagonal approximants yield 
y' = 1.212, 1.211, 1.232, and 1.259, respectively. The 
estimates for the s.c.(1, 2) lattice are still erratic for the 
higher-order approximants; on the basis of the results 
for the b.c.c.{l, 2) and f.c.c.{l, 2) lattices, we conclude 
that 

1.18 ~ y' ~ 1.28. (42) 

In (42) it can be seen that we are slightly at odds with 
the estimate (35) of Baker and Gaunt35 and the sug­
gestion that y' = I1G' The results for fJ in (41) and 
those of the high-temperature susceptibility index y 
in Sec. VI strongly support the view that these expo­
nents are not affected by including second neighbor 
interactions; consequently, we expect y' to be 
similarly unaffected. The center of the range of un­
certainty in (42) lies closer to the value y' = t, and 
the value of 11

5
6 would appear to be excluded by our 

results, especially those for the b.c.c.(1, 2) lattice. 
There is an important issue involved here, namely, 

the symmetry of the thermodynamic functions about 



                                                                                                                                    

TABLE VIII. Estimates of the critical exponents (3 and y' from the Pade approximants to Eqs. (38) and (39). 

[M,NJ f.c.c.O. 2) [M,N] s.c.(1,2) [M,NJ b.c.c.O, 2) [M,NJ ~(1, 2) [M,NJ s.q.(1,2) 

Mo xo {J y' Mo Xo {3 y' Mo Xo f3 y' Mo Xo {3 y' Mo Xo f3 y' 

16,16 11,11 0.3315 0.7782 16,16 11,11 0.3269 0.7558 10, 10 6,6 0.3120 0.8071 8,8 5, 5 0.1815 0.3818 4,4 2,2 0.1387 1.2037 
16,17 11,12 0.3252 16,17 11,12 0.3191 0.5761 10,11 6, 7 0.3126 0.5454 8,9 5,6 0.1906 0.9426 4,5 2,3 0.1386 1.1525 
17,16 12,11 17,16 12, 11 0.3067 0.5783 11,10 7,6 0.3126 0.5482 9,8 6,5 0.1831 0.9606 5,4 3,2 0.1366 1.1582 
17,17 12,12 0.3352 0.8562 17,17 12,12 0.3310 0.8175 11,11 7, 7 0.3124 0.8000 9,9 6,6 0.2914 1.2727 5,5 3,3 0.1526 1.1889 
17,18 12,13 0.3446 1.1342 17,18 12,13 0.3486 1.1219 11,12 7, 8 0.3123 1.3287 9, 10 6,7 0.1583 0.9899 5,6 3,4 0.1341 1.3078 
18,17 13,12 0.3401 1'.1376 18,17 13,12 0.3410 1.1254 12,11 8, 7 0.3123 1.3412 10,9 7,6 0.1449 1.0032 6, 5 4,3 0.1304 1.4927 - 18,18 13,13 0.3334 1.1267 18,18 13,13 0.3247 1.1129 12,12 8,8 0.3123 1.0225 10,10 7,7 0.1284 0.9885 6,6 4,4 0.1292 1.0820 

N 18,19 13,14 0.3074 1.0896 18,19 13,14 0.3097 1.0600 12,13 8,9 0.3187 1.2115 10,11 7,8 0.1395 0.9903 6, 7 4,5 0.1295 0.7208 
00 

19,18 14,13 0.3788 1.1119 19,18 14,13 0.3035 1.0930 13,12 9,8 0.3130 1.2162 11,10 8,7 0.1369 0.9797 7,6 5,4 0.1295 0.8721 ..., 
19,19 14, 14 0.3235 1.1228 19,19 14, 14 0.3151 1.1080 13,13 9,9 0.3123 1.2116 11, 11 8,8 0.1446 0.9873 7, 7 5, 5 0.1293 1.2376 
19,20 14, 15 0.3285 1.1272 19,20 14,15 0.3064 1.1131 13,14 9, 10 0.3122 1.2115 11,12 8,9 0.1407 0.9892 7,8 5,6 0.1262 1.7492 
20, 19 15,14 0.3270 1.1288 20, 19 15,14 0.2515 1.1146 14,13 10,9 0.3122 1.2077 12,11 9,8 0.1394 1.0001 8, 7 6,5 0.1304 2.1042 
20,20 15, 15 0.3262 1.1344 20,20 15,15 0.3190 1.1206 14, 14 10,10 0.3123 1.2112 12,12 9,9 0.1403 0.3658 8,8 6,6 0.1300 1.5035 
20,21 15,16 0.3261 1.1615 20,21 15,16 0.3208 1.0709 14,15 10,11 0.3119 1.2114 12,13 9, 10 0.1406 1.1622 
21,20 16, 15 0.3260 0.7951 21,20 16,15 0.3207 1.1024 15,14 11,10 0.3118 1.2149 13,12 10,9 0.1386 1.1801 
21,21 16,16 0.3262 1.1701 21,21 16,16 0.3203 1.2125 15,15 11,11 0.3131 1.2321 13,13 10, 10 0.5962 1.1785 
21,22 16,17 0.3246 1.1599 21,22 16, 17 0.3202 0.9991 15,16 11,12 0.3089 
22,21 17,16 0.3388 1.2377 22,21 17,16 0.3201 1.0633 16,15 12,11 0.3071 1.1245 
22,22 17,17 0.3255 1.2230 22,22 17,17 0.3203 0.9557 16,16 12,12 0.3859 1.2587 

17,18 1.1777 17,18 1.0021 
18,17 1.2391 18,17 1.0839 
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TABLE IX. Estimates of the critical exponents (J and y' from 
the Pade approximants to (38) and (39). 

[M,N] 
b.c.c.(1, 2, 3) [M,N] 

s.c.(l, 2, 3) 

Mo XO f3 y' Mo Xo {J y' 

25,25 19,19 0.3635 0.5814 25,25 19,19 0.3497 0.1963 
25,26 19,20 0.3642 0.7622 25,26 19,20 0.3506 0.7247 
26,25 20,19 0.3642 0.7622 26,25 20, 19 0.3506 0.7248 
26,26 20,20 0.3402 0.8114 26,26 20,20 0.2716 0.7764 
26,27 20,21 0.2645 1.0614 26,27 20,21 0.1656 1.0494 
27,26 21,20 0.2645 1.0633 27,26 21,20 0.1655 1.0515 
27,27 21,21 0.3401 1.0530 27,27 21,21 0.2716 1.0421 
27,28 21,22 0.3646 1.0280 27,28 21,22 0.3505 1.0262 
28,27 22,21 0.3646 1.0370 28,27 22,21 0.3505 1.0315 
28,28 22,22 0.3613 1.0478 28,28 22,22 0.3495 1.0388 
28,29 22,23 0.3637 1.0521 28,29 22,23 0.3516 1.0426 
29,28 23,22 0.3637 1.0531 29,28 23,22 0.3515 1.0437 
29,29 23,23 0.3630 1.0558 29,29 23,23 0.3486 1.0507 
29, 30 23,24 0.3642 1.0394 29, 30 23, 24 0.3413 1.0838 
30,29 24,23 0.3642 1.0494 30,29 24,23 0.3411 1.1441 
30, 30 24,24 0.3622 1.0655 30, 30 24,24 0.3495 1.0598 
30,31 0.3625 30,31 0.2636 
31,30 0.3625 31,30 0.2273 

the critical point. The scaling laws of Kadanoff41 and 
Widom42 predict equal values for the exponents above 
and below Tc , i.e .. , y = y' and IX = IX', etc. The value 
of y is better established at 1.250 ± 0.003 than any 
other index both for our own equivalent neighbor 
model lattices and for the n.n. model. The symmetry 
of io about Tc is almost rigorously established for the 
two-dimensional nearest neighbor model lattices; 
consequently, for y' = Ifs a breakdown of symmetry 
is indicated in three dimensions. We conclude that our 
own figures are inconsistent with this interpretation, 
that y' is probably'}, and that the transition is 
symmetric. 

To further investigate the rival claims of y' = } or 
y' = 1 flf' we can examine the approximants of 
(io)~ and (io)H. The function (iO)l/y' has a simple pole 
at U = uc ' and following Baker5 we expect greater con­
sistency in the poles of the sequence of approximants 
if y' is chosen correctly. The differences between the 
values of Uc obtained in this way and the values shown 
in Table VII are listed in Table X (the differences are 
recorded in units of JO-4). We have taken the sequence 
of [N, N + 1] approximants in each case. The two 
sequences in Table X indicate that the assumption 
y' = } is more consistent with the high-temperature 
estimates of Uc • 

The evidence from Tables VI and IX indicates that f3 
is significantly higher for the third equivalent neighbor 
model lattices and suggests that 

0.345 ~ f3 ~ 0.365 (43) 

for the s.c.(l, 2, 3) and b.c.c.(l, 2, 3) lattices. The 

41 L. P. Kadanoff, Physics 2, 263 (1966). 
42 B. Widorn, J. Chern. Phys. 43, 3892, 3898 (1965), 

corresponding values of y' suggested by Table IX are 

1.01 ~ y' ~ 1.14. (44) 

In the light of the results for the L(I, 2) lattices, the 
estimates of f3 for the s.c.(1, 2, 3) and b.c,c,(l, 2,3) 
lattices are puzzling, also the values of y' are signifi­
cantly lower than expected. We cannot say that (43) 
and (44) represent a definite extended-range effect, 
only that the bounds have been established in exactly 
the same manner as those above and those of previous 
authors. Two points must be made here, First, these 
estimates are based on expansions involving low­
temperature spin configurations containing a maxi­
mum of five spins, In the corresponding series for the 
L(l, 2) lattices several configurations of six and seven 
spins were included (see above) by extending the 
series. Second, if the partition function is nonuni­
formly convergent in the range of interaction, 
progressively more terms in the expansions are 
required to obtain a given accuracy in the estimates of 
critical parameters such as y' and p. The authors are 
therefore inclined to the view that the indices are 
unchanged by the inclusion of higher neighbor 
interactions. 

I f the shift between the ranges (41) and (43), and 
(42) and (44) is not all accounted for by the above 
convergence effect, then (43) may have some bearing 
on the gas-liquid critical point. It has often been 
suggested that discrepancies between values of p 
obtained from coexistence curve measurements and 
the values based on the n.n. Ising model are due to 
the site restrictions of atoms in the r sing model. 
One way of examining this is to adopt the quantum­
lattice gas model of Matsubara and Matsuda,43 
taking into account the kinetic energy of the gas 
molecules. The magnetic analog of the quantum­
lattice gas is the anisotropic Heisenberg model. Pre­
liminary work on this model by the present authors44 

and Fisher45 indicates that for the molecules found in 
nature a removal of the site restriction is likely to have 
no effect on the critical exponents. The value of f3 
obtained by Fisher46 in an analysis of Weinberger 
and Schneider's47 data on xenon is f3 = 0.345 ± 
0.015, which falls in the range (43). It seems very 
likely that the quantum-lattice gas will not account 
for these discrepancies, and in view of (43) an Ising­
lattice gas model with hard cores of a larger size 

43 T. Matsubura and H. Matsuda, Progr. Theoret. Phys, 16, 416, 
569 (1956). 

44 N. W. Dalton and D. W. Wood, Proc. Phys. Soc. (London) 
90,459 (1967). 

45 M. E. Fisher, Phys. Rev. Letters 16, II (1966). 
46 M. E. Fisher, J. Math. Phys. 5, 944 (1964). 
47 M. A. Weinberger and W. G. Schneider, Can. J. Chern. 30, 

422 (1952). 
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TABLE X. Difference between Uc obtained from the [N, N + 1] approximants to 
(Xo)l/y' and the values in Table VII. 

f.c.c.(1, 2) s.c.(1, 2) b.c.c.(1,2) 
N N 

y' = i y' = 1-,~ y' = ~ 

11 163 200 11 265 
12 69 100 12 75 
13 50 75 13 56 
14 51 76 14 56 
15 26 47 15 11 
16 16 150 
17 24 -29 17 3 

together with an attractive potential of an extended 
range may be the answer, where, for example, the 
core prevents simultaneous occupation of first neigh­
bor sites and attractive interactions are present up to 
third neighbors. 

V. HIGH-TEMPERATURE SERIES EXPANSIONS 

An extensive literature exists on the high-tempera­
ture development of the Ising model; a complete set 
of references can be found in reviews by Domb2 and 
Fisher.5 The calculations proceed by expanding the 
partition function in the form 

n 

and isolating the contributions to successive terms in 
the form of high-temperature lattice constants. Recent 
calculations of Sykes, Essam, Heap, and Hiley48 have 
considerably extended the number of high-temperature 
lattice constants available for the nearest neighbor 
model, and Sykes, Martin, and Hunter49 have employed 
these to extend the specific-heat Cv expansion for the 
f.c.c.( 1) lattice. These authors find that Cv diverge at 
the critical point as 

(46) 

where oc (the high-temperature specific-heat exponent) 

~l· 
The high-temperature expansions for the second 

and third equivalent neighbor model lattices have been 
derived by Domb and Dalton,14 who obtained the 
high-temperature expansions of the zero-field parti­
tion function and susceptibility for the second 
equivalent neighbor model to order T-7 and similarly 
for the third equivalent neighbor model to order 
T-6. These authors discussed the "bulk" critical 
properties such as the critical energy and entropy, and 

'8 M. F. Sykes, J. W. Essam, B. R. Heap, and B. J. Hiley, J. 
Math. Phys. 7,1557 (1966). 

4. M. F. Sykes, J. L. Martin, and D. L. Hunter, Proc. Phys. Soc. 
(London) 91, 671 (1967). 

N 
y' = 1;-"0 y' = ~ y' = 1'"0 

6 41 79 
105 7 98 138 
80 8 58 96 
80 9 17 42 
43 10 18 43 

-72 11 1 23 
-76 12 -44 -22 

examined their asymptotic behavior for large co­
ordination numbers. Finally, Dalton15 derived the 
expansions of the zero-field partition function and 
susceptibility, valid for general spin and arbitrary 
second neighbor exchange interaction through to 
orders T-6 and T-5, respectively. 

It is our purpose to examine the dependence of the 
bulk critical properties of the second neighbor model 
(S = t) upon the relative strengths of the nearest 
neighbor and next nearest neighbor interactions; for 
this we introduce the paraflleter oc = J2/J1 • We also 
examine the high-temperature susceptibility critical 
exponent y for the equivalent neighbor model lattices. 

The high-temperature expansions of the zero-field 
susceptibility and partition function for the second 
neighbor model are in the form 

co 

kTXo/Nm2 = 1 + ~:Cn(oc)Kn (47) 
n~O 

and 
00 

In Z/N = In 2 + L bn(oc)Kn, (48) 
n~O 

where K = 2J1/kT and the coefficients cn(oc) and bn(oc) 
are polynomials of degree n in oc. The expansions can 
be conveniently reduced to a general form valid for an 
arbitrary regular lattice, where they are expressed in 
terms of Q1, Q2 and the lattice constants of multiply 
connected diagrams. These expansions are recorded 
in Appendix D. 

VI. VARIATION OF THE CRITICAL TEM­
PERATURE WITH THE SECOND 

NEIGHBOR INTERACTION 

For the second neighbor 'model we have investigated 
the variation of Kc (= J1/kTc) with oc (= J2/J1) for 
values of oc in the range 0 S oc S 1 (both J1 and J2 

positive). To determine the critical temperatures, the 
Pade approximants to d/dK In (xo) and (Xo)t- have 
been calculated and the appropriate singularities 
selected. The higher-order approximants to both these 
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TABLE XI. Values of 2J,/kT.(oc) based on the [3,3] approxi-

mants to (XoY! for the three-dimensional lattices and (Xo)+ for 
the two-dimensional lattices. 

oc f.c.c. s.c. b.c.c. A s.q. 

0 0.1021 0.2216 0.1573 0.2743 0.4418 
0.1 0.09624 0.1759 0.1450 0.2375 0.3870 
0.2 0.09123 0.1465 0.1344 0.2132 0.3451 
0.3 0.08638 0.1258 0.1253 0.1906 0.3118 
0.4 0.08231 0.1107 0.1175 0.1729 0.2849 
0.5 0.07862 0.09645 0.1106 0.1587 0.2625 
0.6 0.07527 0.08904 0.1045 0.1468 0.2436 
0.7 0.07223 0.08123 0.09914 0.1368 0.2274 
0.8 0.06944 0.07474 0.09430 0.1282 0.2134 
0.9 0.06689 0.06925 0.08994 0.1207 0.2010 
1.0 0.06453 0.06452 0.08599 0.1140 0.1902 

functions yield agreement in Ke to within 3 parts in 
104 over the whole range of IX for the lattices in 
Table Xl. The agreement always improves with 
increasing values of IX and is as little as I part in 104 

for the three-dimensional lattices with IX > t. In 
Table XI we present the estimates of Ke(IX) based on 
the [3, 3] approximants to (Xo)t for the three-dimen­
sional lattices, and to (Xo)* for the two-dimensional 
lattices. 

The variation of the critical temperature with the 
strength of the second neighbor interaction is shown 
in Figs. 3 and 4 where Te(IX)jTe(O) is plotted against 

3·0r-------+-------+-------4-------~ 

DOMB POTTS 
1951 

2 ·51-----+----
1:(0() 

1(0) 

2·0r-------·~------~L---~~~----~ 

·25 '75 1·0 

FIG. 3. The variation of the critical point for the s.q. and tri­
angular lattices for values of oc in the range 0 S oc S I. 

HEISENBERG-----­

ISING 
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2.5,~---+-----.J.-~~--+------I 
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Tc(o) 

2·011-------1---r--~__f----__"!:~----I 

1 .. ua:o='O __ --l.. ____ L-___ ..I.-___ -' 
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01.. = J2 / J1 q. J2>O ) 

FIG. 4. The variation of the critical point of the three-dimen­
sional lattices for the Heisenberg and Ising models with oc in the 
range 0 S oc S I. The curves for the Heisenberg model are taken 
from Dalton and Wood. 23 

IX for the two- and three-dimensional lattices, 
respectively. Here Te(O) is the critical temperature of 
the n.n. model. In Fig. 3 the results of Domb and 
Potts13 for the s.q. lattice are shown for comparison, 
and in Fig. 4 we compare the corresponding curves 
for the Heisenberg model obtained by the present 
authors.23 The plots do show a slight curvature which 
is more pronounced for the two-dimensional lattices 
and is very likely due to the more rapid convergence 
for IX ~ t. To a good approximation, the variation of 
the critical temperature in the range 0 ~ IX =:; I can 
be represented by 

(49) 

where the values of ml obtained from Figs. 3 and 4 
are compared with the corresponding values for the 
Heisenberg model (S = t) in Table Xli. The values 
of m1 given here for the Ising model reproduce the 

TABLE XII. Estimates of m, in (49) for the Heisenberg 
and Ising models. 

Lattice f.c.c. s.c. b.c.c. s.q. A" 

Ising 0.61 2.47 0.84 1.45 1.35 
Heisenberg 0.69 2.80 0.94 
Classical 0.50 2.00 0.75 2.00 2.00 
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critical temperatures to within 2 % for the two­
dimensional lattices and to within 1 % for the three­
dimensional lattice. The classical theories of both the 
Ising and Heisenberg models predict that Tc(rx)ITe(O) 
is exactly linear in rx with m1 given by 

m1 = q21q1' (50) 

Interesting effects occur when rx < 0 with J 1 > 0 
and J2 < 0, and the question of the type of antiferro­
magnetic ordered state arises. In the case of the 
Heisenberg model this problem has recently been 
considered by Tahir-Kheli, Callen, and Jarrett50 using 
a first-order Green-function treatment, the results of 
which agree well with a series-expansion approach 
discussed by the present authors. 51 The results indicate 
that Te(rx) --+ 0 as rx --+ rx*, where for rx < rx* ferro­
magnetic ordering gives way to some kind of anti­
ferromagnetic ordering. Unfortunately, the present 
expansions (S = i) of the susceptibility quickly 
become erratic for rx in the range -1 ::;; rx ::;; 0, and 
we can only suggest the following limits on rx*; 

f.c.c. -1.0::;; rx* ::;; -0.7, (51a) 

s.c. -0.4 ::;; rx* ::;; -0.2, (51b) 

b.c.c. -0.8::;; rx* ::;; -0.6. (51c) 

It is highly probable that rx* is independent of spin 
and that by examining the general spin expansions 
given by Dalton, rx* could be obtained to within a 
few per cent. 

VII. THE CRITICAL EXPONENT OF THE 
HIGH-TEMPERATURE SUSCEPTmILlTY 

The high-temperature approach to Tc of Xo is of the 
form 

(52) 

where y is the critical exponent and E the amplitude 
of the singularity. Of all the critical exponents 
related to the three-dimensional n.n. model lattices 
this is the most firmly established on the basis of 
series expansions. The conclusion of the numerical 
work is 

Y = 1.250 ± 0.003 c::: Ii, (53) 

and it is suggested that Y = 1 i exactly. For the two­
dimensional lattices, y = Ii. (See Ref. 52.) 

The expansions of Xo above Tc are very suitable for 
extrapolation, since the terms of the expansion are all 
positive and display a smooth behavior. Consequently, 
we can employ the ratio methods of Domb and 
Sykes24 to obtain estimates of y for the L(l, 2) and 

50 R. Tahir-Khe1i, H. B. Callen, and H. S. Jarrett, J. Phys. Chern. 
Solids 27, 23 (1966). 

51 D. W. Wood and N. W. Dalton, Phys. Rev. 159, 384 (1967). 
52 L. P. Kadanoff, Nuovo Cimento 44, 279 (1966). 

TABLE XIII. Estimates of y obtained from (55) for the 
second equivalent neighbor model lattices. 

n 
s.q.(l,2) ~(l, 2) s.c.(l, 2) b.c.c.O, 2) f.c.c.(I, 2) 

Y. Y .. Yn Y .. y .. 

2 1.634 1.499 1.193 1.228 1.191 
3 1.709 1.583 1.210 1.240 1.207 
4 1.728 1.634 1.219 1.241 1.215 
5 1.742 1.643 1.224 1.242 1.221 
6 1.749 1.682 1.228 1.242 1.224 
7 1.754 1.693 1.231 1.243 1.227 
8 1.756 

L(l, 2, 3) lattices. The values of Ke for these lattices 
have been given previously by Domb and Dalton.14 

Following Domb and Sykes24 the coefficients en in 
(47) are assumed to have the asymptotic form 

(54) 

where C is some constant. From (54) we can form the 
sequence {Yn}, where 

Yn = 1 + nKh"n - liKe) (55) 
and 

yielding successive estimates of y. The values of Ka 
in (55) should be the over-all best estimates given in 
Table VII. In Table XIII and XIV we record these 
results for Y for the L(I, 2) and L(I, 2, 3) lattices, 
respectively. The sequences {Yn} appear to be increas­
ing to limiting values for both the L(l, 2) and L(l , 2, 3) 
lattices. The figures for the s.q.(I, 2) lattice certainly 
suggest that Y = II, the same value as for the n.n. 
model lattices. Again, assuming Y to be a simple 
rational fraction, {y n} for the three-dimensional 
L(I, 2) lattices appear to be approaching a value of 

Y = Ii· 
The sequences {y n} for the L(I, 2, 3) lattices are 

consistently lower than the corresponding sequences 
for the L(I, 2) lattices, although they are converging 
at approximately the same rates. The figures for the 
s.c. (1, 2, 3) lattices suggest that the final limit is again 
likely to be 1 i. 

We have also obtained estimates of Y by computing 
the Pade approximants to dldK[log (Xo)] and finding 

TABLE XIV. Estimates of y obtained from (55) for the 
third equivalent neighbor model lattices. 

n s.q.(1, 2,3) 6.(1,2,3) s.c.(1, 2, 3) b.c.c.(1, 2,3) f.c.c.(l, 2, 3) 
y.. y.. Y.. y" Y .. 

2 1.497 1.421 1.160 1.145 1.107 
3 1.580 1.514 1.186 1.163 1.127 
4 1.630 1.574 1.199 1.176 1.140 
5 1.662 1.614 1.210 1.184 1.150 
6 1.681 1.642 1.219 1.190 1.167 
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TABLE XV. Estimates of the high-temperature susceptibility critical exponent y obtained from 
the approximants to d/dK{log Xo} for the L(1, 2) lattices. 

[N,M] s.q.(1,2) [N,M] d(1, 2) [N,M] s.c.(1, 2) [N,M] b.c.c.(1, 2) [N,M] f.c.c. (1, 2) 

2,2 1.811 2,2 2.559 2,2 1.216 2,2 1.248 2,2 1.210 
2,3 1.825 2,3 1.963 2,3 1.221 2,3 1.244 2,3 1.226 
3,2 1.852 3,2 1.441 3,2 1.220 3,2 1.245 3,2 1.218 
3,3 1.836 3,3 1.952 3,3 1.227 3,3 1.244 3, 3 1.221 
4,3 1.823 4,2 1.955 4,2 1.228 4,2 1.244 4,2 1.221 
3,4 1.832 2,4 1.952 2,4 1.224 2,4 1.244 2,4 1.221 

TABLE XVI. Estimates of the high-temperature susceptibility critical exponent y from the approximants 
to d/dK{log Xo(K)} for the L(1, 2, 3) lattices. 

[N,M] 
s.q.-

[N,M] 
d-

[N,M] (1,2,3) (1,2,3) 

2,2 2.411 2,2 2.166 2,2 
2,3 2.4H 2, 3 1.979 2,3 
3,2 2.165 3,2 1.949 3,2 

the residues at the appropriate singularities (see 
Sec. III). These results are shown in Tables XV and 
XVI. These sequences are less regular than those 
obtained using the ratio method; however, the 
results for the three-dimensional lattice are in excellent 
agreement with those of Tables XIII and XIV. From 
the results over-all, we conclude that the index y is not 
affected by extending the range of interaction for either 
the two-dimensional or three-dimensional lattices. 
On the basis of the figures for the s.q.(l, 2) and 
b.c.c. (l, 2) lattices, we conclude that 

y = l.25 ± 0.01 (three dimensions) (56) 
and 

y = l.79 ± 0.04 (two dimensions). (57) 

VIII. THE CRITICAL ENERGY AND ENTROPY 

Those critical properties which change noticeably, 
with the type of exchange interactions present, the 
range of the interactions and their relative strengths, 
are of interest in relation to experimental work. From 
these properties information relating to specific 
materials can be deduced. The critical properties in 
this category are principally the critical point Kc; 
the critical energy (Eoo - Ec)jkTc' and the critical 
entropy (Soo - Sc)/k. The critical energy and entropy 
are particularly useful for comparing model calcula­
tions since they are independent of the exchange 
constant J1 , and in the case of the second neighbor 
model depend only on the relative magnitude of J1 and 
J2 , and consequently can be used to detect the presence 
of n.n.n. interactions. Both functions are related to the 
area under the high-temperature specific-heat curves 
("the tail") plotted on a reduced scale of temperature 

S.c.-
[N,M] 

b.c.c.-
[N,M] 

f.c.c.-
(1,2,3) (1,2,3) (1,2,3) 

1.168 2,2 1.181 2,2 1.135 
1.262 2,3 1.185 2,3 1.144 
1.187 3,2 1.184 3,2 1.142 

t (= Tj Tc); the relations are 

(Eoo - EJjkTc = 11k 100 

Cv dt (58) 

(Soo - Sc)jk = 11k roo Cv dt. J1 t 

and 

(59) 

Domb and Sykes53 have examined the effects of 
spin on these functions for the Ising and Heisenberg 
n.n. model lattices and the present authors23 •44 have 
previously discussed the effects of n.n.n. interactions, 
and of anisotropic n.n. interactions for the three­
dimensional Heisenberg lattices. We have also given 
a detailed comparison of the statistical theories 
with the experimental work of Miedema et al. 54 

on the ferromagnetic salts CuK2Cl42H20 and 
Cu(NH4)2CI42H20, where by the use of (58) and 
(59) the exchange integrals J11k and J21k are esti­
mated. 55 A review of such comparisons has been given 
by Domb and Miedema.s 

The expansions of the critical energy and entropy 
can be obtained from the coefficients Pr•s in Appendix 
D. For example, the expansions for the f.c.c. lattice 
are 

E - E (rx). 2 2 3 
00 C = (6 + 3rx )Kc + (24 + 36rx)K c 

kTc 
+ (130 + 288rx + 144rx2 + llrx4)K~ 
+ (800 + 2240rx + 2160rx2 + 760rx3)K~ 
+ (5316.8 + 18432()( + 244801J(2 

+ 14400rx3 + 3636rx4 + 108.4rx6)K:, 
(60) 

.3 C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962). 

.4 A. R. Miedema, H. Van Kempen, and W. J. Huiskamp, 
Physica 29, 1266 (1963). 

•• D. W. Wood and N. W. Dalton, Proc. Phys. Soc. (London) 
87,755 (1966). 
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. . Eoo - E,(rx) 
TABLE XVII. Normahzed estimates for kT, : 

Ising model s = !. 

rx f.c.c.(1,2) s.c.(l, 2) b.c.c.(l, 2) fl(l, 2) s.q.(1, 2) 

0 0.150 0.237 0.169 0.549 0.623 
0.1 0.140 0.181 0.159 0.482 0.580 
0.2 0.134 0.158 0.150 0.470 0.545 
0.3 0.125 0.137 0.143 0.435 0.519 
0.4 0.119 0.129 0.137 0.409 0.503 
0.5 0.111 0.123 0.135 0.387 0.491 
0.6 0.109 0.122 0.134 0.370 0.482 
0.7 0.105 0.117 0.132 0.358 0.473 
0.8 0.101 0.109 0.131 0.346 0.465 
0.9 0.099 0.103 0.130 0.337 0.460 
1.0 0.098 0.098 0.129 0.330 0.456 

and 

Soo - SoCoc) = (3 + 1.51X2)K~ + (16 + 24oc)K~ 
k 

+ (97.5 + 2160c + 108oc2 + 8.25oc4)K~ 
+ (640 + 17920c + 1728oc2 + 608oc3)K~ 
+ (4430% + 153600c + 20400oc2 

+ 12000oc3 + 3030oc4 + 90toc6)K~. 
(61) 

By forming the Pade approximants to these series 
and eVAluating them at K = Kc [values of KcCoc) are 
obtained from Table XI] we have obtained estimates 

.10f---j-"':'-'-=p===~====--.J 

o ·25 '75 1-0 

FIG. 5. The variation of the critical energy with the magnitude 
of the second neighbor interactions. The curves for the Heisenberg 
model are taken from Dalton and Wood. 2' 

. . Soc; - S,(rx) 
TABLE XVIII. Normalized estImates for k : 

Ising model s = !. 

rx f.c.c.(I, 2) s.c.(l, 2) b.c.c.(1, 2) fl(l, 2) s.q.(1, 2) 

0 0.102 0.152 0.107 0.363 0.387 
0.1 0.096 0.130 0.104 0.342 0.377 
0.2 0.090 0.104 0.100 0.325 0.366 
0.3 0.085 0.102 0.096 0.314 0.358 
0.4 0.081 0.094 0.094 0.296 0.352 
0.5 0.078 0.086 0.093 0.285 0.349 
0.6 0.075 0.081 0.092 0.279 0.344 
0.7 0.072 0.076 0.090 0.275 0.339 
0.8 0.069 0.072 0.089 0.270 0.336 
0.9 0.067 0.069 0.087 0.261 0.334 
1.0 0.065 0.065 0.086 0.250 0.332 

of the critical energy and entropy in the range 
o :::;; oc :::;; 1. These show a greater spread between 
successive approximants than the other parameters 
discussed above, the reason being that the series are 
quite short and the terms have not settled down to 
any smooth behavior. The longer series available for 
the points oc = 0 (n.n. model) and oc = 1 (second 
equivalent neighbor model) makes it possible to deter­
mine these critical parameters at each end of the range 
more accurately; and in the case of the two-dimen­
sional lattices we have, of course, exact results at 
IX = O. We can take advantage of this by fitting the 
critical-energy and entropy curves to pass through the 
end points using a normalization method described 
by us previously.55 The normalized estimates are given 
in Tables XVII and XVIII. In Figs. 5 and 6 the 

.050·1:---..J..... __ --L __ ---l. __ ---l 

o ~5 00 ~ W 

oL..~ 

FIG. 6. The variation of the critical entropy with the magnitude 
of the second neighbor interactions. The curves for the Heisenberg 
model are taken from Dalton and Wood?" 
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critical-energy and entropy curves for the two- and 
three-dimensional la,ttices are shown, and compared 
with the corresponding curves for the Heisenberg 
model. The curves illustrate the rapid decrease of the 
specific-heat tail for the two-dimensional lattices on 
the inclusion of second neighbor interactions, and 
also the large differences in the tail on passing from 
two to three dimensions. The curves for the Heisen­
berg model in Figs. 5 and 6 illustrate the much larger 
tails on the Cv curves compared with the corresponding 
Ising model lattices. 

IX. CONCLUSIONS 

In this paper we have discussed some of the effects 
of more-distant-neighbor interactions on the critical 
and thermodynamic properties of the Ising ferro­
magnet. In considering the critical-point behavior of 
the model, we have made use of the concept of the 
equivalent neighbor model introduced by Domb and 
Da1ton.14 In this model the range of interaction is 
extended to include 2nd, 3rd,···, nth neighbor 
interactions but the exchange constant is maintained 
at the same value between all the interactions taken 
into account. The equivalent neighbor model has been 
used to examine the critical exponents related to the 
magnetization M o, and the low- and high-temperature 
(T ~ Tc) zero-field susceptibility XO for the Ising 
model with second and third equivalent neighbor 
interactions present. Our philosophy has been that 
any detectable effects of an extended range of inter­
action on the critical exponents must be visible in the 
equivalent neighbor model, and that for this purpose 
it is unnecessary to consider finer details such as the 
relative strength of the interactions. The theoretical 
approach used is the one of developing power-series 
expansions for the partition function and related 
thermodynamic functions valid in regions above and 
below the transition temperature. 

In Sec. II the development of the low-temperature 
expansion of the partition function Z IV with inter­
actions between nth neighbor pairs present is described 
and specific consideration is given to the second 
neighbor model, where the high-temperature-Iow­
temperature transformation of Domb27 is applied to 
deriving the low-temperature polynomials !n(u, v) 
appearing in Z IV' The first five low-temperature 
polynomials are obtained for the second neighbor 
model two- and three-dimensional lattices (six poly­
nomials in the particular case of the s.q. lattice). The 
same number of polynomials have also been deter­
mined for the second and third equivalent neighbor 
model lattice [except for the f.c.c.(l, 2, 3) where only 
four polynomials are available]. Some of the aspects 

related to the enumeration and counting of the low­
temperature spin configurations contributing to the 
polynomials !n(u, v) are briefly discussed in Sec. III. 
The numerical data related to Secs. II and III is 
collected together in Appendices A, B, and C. These 
Appendices contain all the high-temperature poly­
nomials 'Pp.a(/-l) [Eq. (15)] and low-temperature 
polynomials g~(u, v) [Eq. (13)] which have been 
derived; and also the low-temperature lattice constants 
of all the spin configurations (which can occur on the 
lattices considered) of up to five spins for the equiva­
lent neighbor model lattices. 

The critical exponents {J and y' relating to Mo and 
XO (T < Tc), respectively, are discussed in Sec. IV 
where the Pade-approximant techniques of Baker,5 
and Essam and Fisher33 have been employed to form 
estimates for the equivalent neighbor model lattices. 
In the case of the two- and three-dimensional L(I, 2) 
lattices, the estimates of {J strongly support the view 
that this index remains unchanged from its value in 
the n.n. model lattices. The range of uncertainty in the 
over-all estimates (41) is such that no shift in {J is 
detectable, and if {J is a rational fraction then it is 
very likely to be the same rational fraction for the 
L(l) and L(l, 2) lattices. For the three-dimensional 
L(l, 2) lattices we conclude that y' lies within the 
limits (42) which excludes the value of 11

5
6 suggested 

by Baker and Gaunt35 for the n.n. model lattices. For 
the b.c.c.(l, 2) lattice, the [13, 13], [14, 14], [15, 15], 
and [16, 16] approximants in Table VIII yield the 
estimates y = 1.212, 1.211, 1.232, and 1.259, respec­
tively. On the basis of these estimates and those of 
the other lattices, we conclude that y' is probably t 
if a rational fraction is sought, and that y' = y for 
these lattices, thus supporting the view that XO is 
symmetric through the transition in a similar manner 
to the two-dimensional n.n. lattices. We have pointed 
out the surprising values of {J obtained in Table IX 
for the three-dimensional L(l, 2, 3) lattices. These 
estimates have been obtained in exactly the same way 
as the other values of {J and are summarized by (43), 
which covers the same width of uncertainty as (41) 
but which lies considerably above the value of 156' 

On the basis of the numerical work alone, (43) should 
be regarded with "almost" the same degree of con­
viction as (41), but because of the nonuniform con­
vergence of the series with respect to the range of 
interaction, these results are not as reliable as the 
corresponding results for the L(1, 2) lattices, which 
support the authors' view that all the critical indices 
are independent of the range of force. If, however, 
the shift between the ranges (41) and (43) is not 
entirely a convergence effect and is in part a real effect, 
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then the results (43) and (44) may be able to explain 
some of the hitherto unexplained discrepancies 
between the experimental eviden.ce for ~ and the 
theoretical predictions of the n.n. Ising model, which 
are of the same order as suggested by (43). 

Sections V, VI, VII, and VIII are devoted to the 
high-temperature series expansions of the second 
neighbor model and equivalent neighbor models, and 
are concerned with the critical properties that can 
be deduced from them. The coefficients of Z.v and 
Xo (T > Tc) for the second neighbor model are recorded 
in a generalized form in Appendix D, where the 
expansions are given through to terms in T-7 and 
T-6, respectively (S = t). In Sec. VI the variation 
of the critical point with the parameter oc (= J2/J1) is 
presented in the range 0 ~ oc ~ I. The results are 
compared with the corresponding behavior of the 
Heisenberg model, and like the Heisenberg model 
the variation of Tc is given to a good approximation 
by the linear relation 

Tc(oc) = Tc(O){1 + m1oc} (0 ~ oc ~ I). (62) 

These results are displayed in Figs. 3 and 4. 
The high-temperature susceptibility exponent y for 

the L(1, 2) and L(1, 2, 3) lattices is discussed in Sec. 
VII. Here both the ratio methods of Domb and 
Sykes24 and the Pade-approximant methods are used. 
The ratio method yields smooth and increasing 
sequences {y n} for estimates of y. The results over-alI 
and in particular {Yn} for the s.q.(1, 2) and b.c.c.(1, 2) 
lattices support the view that the index Y is unaffected 
by extending the range of interaction and that if y is a 

rational fraction then it is the same rational fraction 
for the L(I), L(l, 2), and L(I, 2, 3) lattice in both two 
and three dimensions. 

Finally, in Sec. VIII we have presented estimates of 
the critical energy (Eoo - Ec)/kTc and the critical 
entropy (S 00 - Sc)/k in the range 0 ~ oc ~ I for the 
second neighbor model. We have included these 
functions along with Kc(oc) because they are very 
useful in comparison with experimental work, where 
specific estimates of J1/k and J2/k are attempted on the 
basis of measurements of the magnetic specific heat 
above Tc. The figures in Tables XI, XVII, and XVIII 
can be used as a reliable basis for such comparisons. 
The variation of the critical energy and entropy is 
shown in Figs. 5 and 6 where the Ising model curves 
are compared with the corresponding Heisenberg 
model results. The authors have previously considered 
the effects anisotropy on Kc(oc) , (Eoo - Ec)jkTc and 
(Soo - Sc)!k; and also their behavior for the second 
neighbor Heisenberg model. With this broad basis of 
numerical work it is hoped in a future publication to 
present a comprehensive examination of the recent 
experimental work on ferromagnetic insulators. 
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APPENDIX A 

Listed below are the high-temperature polynomials ([!p,q(fl) and the low-temperature polynomialsgs(u, v) for 
the second neighbor model lattices. The polynomials are defined in Sec. II [Eqs. (13) and (14)] in relation to 
the low-temperature expansion of the partition function. 

High-temperature polynomials for the s.c. lattice: 

([!o.o = I, 
([!l,O = -3fl, 
([!O.1 = -6fl, 
([!2,O = 3fl - 6fl2 + 3fl3, 
([!1,l = 18,u - 18,u2 + 18,u\ 
([!O,2 = 15,u - 21fl2 + 15fl3, 
([!3,O = -,u + 25fl2 - 49fl3 + 25fl4 - fl5, 
([!2,l = -18,u + 180,u2 - 312,u3 + 180,u4 - 18,u5, 
([!l,2 = -45,u + 369,u2 - 675,u3 + 369,u4 - 45,u5, 
([!o,s = -20,u + 230,u2 - 414,us + 230,u4 - 20,u5, 
!P4,O = -30,u2 + 273,u3 - 486,u4 + 273,u5 - 30,u6, 
([!S,l = 6,u - 438,u2 + 2604,u3 - 4326,u4 + 2604,u5 - 438,u6 + 6,u7, 
([!2,2 = 45fl - 1665,u2 + 8688,u3 - 14076,u4 + 8688,u5 - 1665,u6 + 45,u7, 
([!1,3 = 60,u - 2220,u2 + 11796,u3 - 19290,u4 + 1 1 796,u5 - 2220,u6 + 60,u7, 
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C{JO,4 = 15,u - 885,u2 + 5265,u3 - 8757,u4 + 5265,u5 - 885,u6 + 15,u7, 
'l!5,O = 15,u2 - 600,u3 + 3351,u4 - 5526,u5 + 3351,u6 - 600,u7 + 15,u8, 
q'4,l = 450,u2 - 9180,u3 + 40272,u4 - 62964,u5 + 40272,u6 - 9180,u7 + 450,u8, 
C{J3.2 = -15,u + 3165,u2 - 46713,u3 + 183693,u4 - 280209,u5 + 183693,u6 - 46713,u7 + 3165,u8 - 15,u9, 
C{J2.3 = -60,u + 7710,u2 - 103542,u3 + 395046,u4 - 597504,u5 + 395046,u6 - 103542,u7 + 7710,u8 - 60,u9, 
rp1,4 = -45,u + 7020,u2 - 99855,u3 + 391536,u4 - 597459,u5 + 391536,u6 - 99855,u7 + 7020,u8 - 45,u9, 
'l!O.5 = - 6,u + 1926,u2 - 32796,u3 + 136962,u4 - 211938,u5 + 136962,u6 - 32796,u 7 + 1926,u8 - 6,u9. 

Low-temperature polynomials for the s.c. lattice: 

g1 (U, v) = U3V
6

, 

g2(U, v) = U6 ( -9~V12 + 6v11
) + 3U5V12 , 

g3(U, v) = u9(l51§v18 - 180v17 + 42v16 + 8V15) + U8C -84v18 + 48v17) + u7(3v18 + 12v17), 
g4(U, v) = U12(-2997iV24 + 5190v23 - 2526v22 + 22V21 + 123v20 + 24v19 + 2V18) 

+ u11 (2337v 24 - 2616v23 + 612v22 + 72V21 ) + U10( -286!V24 - 276v23 + 210v22 + 24v21 ) 
+ u9(3v 24 + 24v23 + 48v22 + 8V21 ) + 3U8V22 , 

g5(1I, v) = 1115(67082}v30 - 152172v29 + 113628v28 - 22208v27 - 5874v26 + 408v25 + 416v24 + 96v23 + 30V22) 
+ U14( -66972v30 + 111120v29 - 53664v28 + 2760V27 + 1884v26 + 240V25 + 24v24) 
+ U13(l4778v30 - 2256v29 - 9942v28 + 2112v27 + 732v26 + 108v25) 
+ U12( -588v30 - 2520V29 - 768v28 + 752v27 + 288v26 + 24v25 + 8V24) 
+ u11(3v30 + 36v29 + 36v28 + 264v27 + 75v 26 + 12v25) + ulO(24v 27 + 24v26). 

High-temperature polynomials for the fc.c. lattice: 

C{JO.O = 1, 
'l!1,0 = -6,u, 
'l!0.1 = - 3,u, 
rp2.0 = 15,u - 21,u2 + 15,u3, 
'l!1,1 = 18,u - 18,u2 + 18,u3, 
'l!O.2 = 3,u - 6,u2 + 3,u3, 
'l!3.0 = -20,u + 230,u2 - 414,u3 + 230,u4 - 20,u5, 
'l!1.2 = -18,u + 180,u2 - 324,u3 + 180,u4 - 18,u5, 
'l!2,l = -45,u + 369,u2 - 663,u3 + 369,u4 - 45,u5, 
'l!0.3 = -,u + 25,u2 - 49,u3 + 25,u4 - ,u5, 
'l!4,O = 15,u - 885,u2 + 5265,u3 - 8757,u4 + 5265,u5 - 885,u6 + 15,u 7, 

'l!3,1 = 60,u - 2220,u2 + 11604,u3 - 18858,u4 + 11604,u5 - 2220,u6 + 60,u7, 
'l!2,2 = 45,u - 1665,u2 + 8796,u3 - 14328,u4 + 8796,u5 - 1665,u6 + 45,u7, 
'l!1,3 = 6,u - 438,u2 + 2688,u3 - 4506,u4 + 2688,u5 - 438,u6 + 6,u7, 
'l!O,4 = - 30,u2 + 273,u3 - 486,u4 + 273,u5 - 30,u6, 
'l!5.0 = -6,u + 1926,u2 - 32796,u3 + 136962,u4 - 211938,u5 + 136962,u6 - 32796,u7 + 1926,u8 - 6,u9, 
'l!4,1 = -45,u + 7020,u2 - 98415,u3 + 381174,u4 - 579123,u5 + 381174,u6 - 98415,u7 + 7020,u8 - 45,u9, 
'l!a.2 = -60,u + 771O,u2 - 103638,u3 + 396150,u4 - 600012,u5 + 396150,u6 - 103638,u7 + 771O,u8 - 60,u9, 
'l!2,3 = -15,u + 3165,u2 - 47805,u3 + 191025,u4 - 292569,u5 + 191025,u6 - 47805,u7 + 3165,u8 - 15,u9, 
'l!1,4 = 450,u2 - 9432,u3 + 4221O,u4 - 66456,u5 + 4221O,u6 - 9432,u 7 + 450,u8, 
'l!0,5 = 15,u2 - 600,u3 + 3351,u4 - 5526,u5 + 3351,u6 - 600,u7 + 15,u8. 

Low-temperature polynomials for the fc.c. lattice: 

g1(U, v) = U6V3, 
g2(U, v) = U12( -9iv6 + 3v5) + 6UIlV6, 
g3(U, v) = u18(l51kv9 - 96v8 + 15v7) + U17(-168v9 + 48v8) + 1116(30v9 + 12v8) + 8U15V9, 
g4(U, v) = U24( -3005~V12 + 2865vIl - 889~V10 + 83v9 + 3v8) + U23(4698v12 - 2772v11 + 396v10) 

+ 1122(-1827v12 + 36v11 + 138v10) + 1121 (-114v12 + 216v11 + 24v10) 
+ u2°(72v12 + 48v11 + 3v lO

) + u19(l2v12 + 12v11
) + 21118V12 , 
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gs(u, v) = u3°(67528tv1S - 85884v14 + 39996v13 - 7712v12 + 327v11 + 48v10) 

+ U29( -135516v15 + 122040v14 - 35568v13 + 3192v12 + 60v11) 
+ u28(81888v15 - 31080v14 - 2790V13 + 1236v12 + 36v11) 

+ U27( -8184v15 - 10896v14 + 2400V13 + 384v12) 

1293 

+ U26( -4506v15 + 540v14 + 1020v13 + 72V12 + 3v11) + U25(96v15 + 360V14 + 312v13 + 24v12) 
+ U24(52v15 + 240V14 + 156v13) + U23(48v1S + 48v14) + U22(24v14 + 6V13). 

High-temperature polynomials for the b.c.c. lattice: 

CPo.o = 1, 
CPl.O = -4f-t, 
CPO,l = -3f-t, 
CP2,O = 6f-t - 1Of-t2 + 6f-t3, 
CP1,l = 12f-t - 12f-t2 + 12f-t3, 
CPO,2 = 3f-t - 6f-t2 + 3f-t3, 
CPs,o = -4f-t + 64f-t2 - 120f-t3 + 64f-t4 - 4f-t5, 
CPu = -18f-t + 162f-t2 - 282f-t3 + 162f-t4 - 18f-t5, 
CPu = -12f-t + 120f-t2 - 216f-t3 + 120f-t4 - 12f-t5, 
CPO,3 = -f-t + 25f-t2 - 49f-t3 + 25f-t4 - f-t5, 
CPu = f-t - 133f-t2 + 961f-t3 - 1647f-t4 + 961f-t5 - 133f-t6 + f-t7, 
CP3,l = 12f-t - 588f-t2 + 3228f-t3 - 5304f-t4 + 3228f-t5 - 588f-t6 + 12f-t7, 
CP2,2 = 18f-t - 714f-t2 + 3792f-t3 - 6156f-t4 + 3792f-t5 - 714f-t6 + 18f-t7, 
CP1,3 = 4f-t - 292f-t2 + 1792f-t3 - 3004f-t4 + 1792f-t5 - 292f-t6 + 4f-t7, 
CPO,4 = -30f-t2 + 273f-t3 - 486f-t4 + 273f-t5 - 3 Of-t 6 , 

CP5,O = 140f-t2 - 3420f-t3 + 16284f-t4 - 25964f-t5 + 16284f-t6 - 3420f-t7 + 140f-t8, 
CP4,l = -3f-t + 1023f-t2 - 16803f-t3 + 68721f-t4 - 105741f-t5 + 68721f-t6 - 16803f-t7 + 1023f-tB - 3f-t9, 
CP3,2 = -12f-t + 1992f-t2 - 28272f-t3 + 109740f-t4 - 166896f-t5 + 109740f-t6 - 28272f-t7 + 1992f-tB - 12f-t9, 
CP2,3 = -6f-t + 1346f-t2 - 20586f-t3 + 82206f-t4 - 125682f-t5 + 82206f-t6 - 20586f-t7 + 1346f-tB - 6f-t9, 
CP1,4 = 300f-t2 - 6288f-t3 + 28140f-t4 - 44304f-t5 + 28140f-t6 - 6288f-t7 + 300f-tB, 
CPO,5 = 15f-t2 - 600f-t3 + 3351f-t4 - 5526f-t5 + 3351f-t6 - 600f-t7 + 15f-tB. 

Low-temperature polynomials for the b.c,c. lattice: 

gl(U, v) = U
4

V
3

, 

g2(U, v) = u8(-7iv6 + 3v5) + 4U7V6, 
g3(U, v) = U12(93tv9 - 72vB + 15v7) + u11( -88v9 + 24v8

) + u1°(l6v9 + 12vB), 

g4(U, v) = U16( -14401v12 + 1635v11 
- 646!v10 + 83v9 + 3vB) 

+ u15(1920v12 - 1152v11 + 180v10) + U14( -714v12 - 180v11 + 96v10) 
+ U13(72v12 + 96v11 + 36v10) + U12(6v11 + 6v10). 

g5(U, v) = u2°(25096tv15 - 37524v14 + 21666v13 - 5484v12 + 372v11 + 48v10) 
+ U19(-43064v15 + 40584v14 - 13104v13 + 1376v12 + 24v11) 
+ U1B(24204v15 - 3936v14 - 3444v13 + 744v12 + 24v11) + U17( -5184v15 - 4248v14 + 360V12) 
+ U16(354v15 + 468v14 + 294v13 + 140v12 + 6v11

) + U15(48v14 + 120v13 + 48v12) + 12u14V12• 

High-temperature polynomials of the s.q. lattice: 

CPo,o = 1, 
CP1,O = -2f-t, 
CPO,l = -2f-t", 
CP2,O = f-t - 3f-t2 + f-t3, 
CPl,l = 4,u - 4,u2 + 4,u3, 
CPO,2 = f-t - 3f-t2 + f-t3, 
CP3,O = 6f-t2 - 14f-t3 + 6f-t\ 
CP2,l = -2f-t + 26ti-2 - 42f-t3 + 26f-t4 - 2f-t5, 
CP1,2 = -2f-t + 26f-t2 - 46f-t3 + 26f-t4 - 2f-t5, 
CPO,3 = 6f-t2 - 14f-t3 + 6f-t4, 
CPu = -2f-t2 + 42~3 - 84f-t4 + 42f-t5 - 2f-t6, 
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fPa.l = -32",2 + 224",3 - 372",4 + 224",5 - 32",6, 
fP2.2 = '" - 65",2 + 377",3 - 615",4 + 377",5 - 65",6 + "', 
fPl,a = -32",2 + 240",a - 412",4 + 240",5 - 32",6, 
CPO.4 = -2",2 + 42",3 - 84",4 + 42",5 - 2",6, 
CPs.o = -34",a + 320",4 - 580",5 + 320",6 - 34",7, 
fP4.1 = 10",2 - 412",a + 2096",4 - 3352",5 + 2096",6 - 412",7 + 10",s, 
fPa,2 = 60",2 - 1160",a + 4912",4 - 7602",5 + 4912",6 - 1160",7 + 60",s, 
fP2,3 = 60",2 - 1200",a + 5184",4 - 8038",5 + 5184",6 - 1200",7 + 60",s, 
fPl.4 = 10",2 - 436",3 + 2338",4 - 3816",5 + 2338",6 - 436",7 + 10",s, 
fPO.5 = -34",3 + 320",4 - 580",5 + 320",6 - 34",7, 
fP6,O = 8",a - 423",4 + 2591",5 - 4365",6 + 2591",7 - 423",s + 8",9, 
fP5.l = 280",3 - 4948",4 + 20276fl5 - 31096fl6 + 20276",7 - 4948fls + 280",9, 
fP4,2 = -18",2 + 1562",a - 17395",4 + 60976",5 - 90154",6 + 60976",7 - 17395",s + 1562",9 - 18",10, 
CPa,3 = -48",2 + 2672",a - 26724fl4 + 90212fl5 - 132124",6 + 90212",7 - 26724fls + 2672",9 - 48",10, 
fP2,4 = -18",2 + 1642",a - 18962",4 + 67776",5 - 100638",6 + 67776",7 - 18962",8 + 1642",9 - 18",10, 
fP1,5 = 296",a - 5484",4 + 23368",5 - 36344",6 + 23368",7 - 5484",8 + 296",9, 
fPO.6 = 8fl3 - 423",4 + 2591",5 - 4365",6 + 2591fl7 - 423fls + 8fl9, 

Low-temperature polynomials for the s.q. lattice: 

gl(U, v) = U
2
V2 , 

g2(U, v) = u4( -4tv4 + 2v3) + 2u3v4, 
g3(U, v) = u6(32tv6 - 28v5 + 6v4) + u5( -24v6 + 8v5) + u4(2v6 + 4v5), 
g4(U, v) = uS

( -283!vS + 362v7 - 150v6 + 18v5 + v4
) + u7(290vS - 208v7 + 36v6) 

+ u6(-61vS - 44v7 + 20v6) + u5(2v8 + 8v7 + 8v6) + U4V6
, 

gs(u, v) = u10(2771tvlO - 4672v9 + 2866vs - 712v7 + 34v6 + 8v5) 
+ u9(-3604v10 + 4008v9 

- 1432vs + 152v7 + 4v6) 
+ uS(1238vlo + 52v9 - 456vs + 88v7 + 4v6

) + u7( -112vlo - 272v9 - 64vs + 48v7) 
+ u6(2vlO + 12v9 + 12vs + 16v7 + v6

) + 8U5V7, 
g6(U, v) = Ul2( -29096tvl2 + 60860vll - 49464vlO + 18768iv9 - 2818vs - 82v7 + 40v6 + 2v5) 

+ ull (45830Vl2 - 69224vll + 37880vlO - 8480v9 + 466vs + 48v7) 
+ ulO( -21920vl2 + 10872vll + 4804vlO - 3232v9 + 296vs + 36v7) 
+ u9(3572iv l2 + 4760vll - 1660vlo - 920v9 + 224v8 + 16v7) 
+ U

S
( -178vl2 - 764vll 

- 724vlO - 80v9 + 87v8 + 8V7) + u7(2vl2 + 16vll + 20vlO - 72v9 + 64vS) 

+ u6(8v9 + 28vs + 4v7) + 2u5vS. 

High-temperature polynomials for the I:l'r lattice: 

fPo,o = 1, 
fPl,O = -3"" 
fPO,l = -3"" 
fP2.0 = 3", - 6",2 + 3",a, 
fPl.l = 9", - 9",2 + 9",3, 
CPO,2 = 3", - 6",2 + 3",3, 
fPa,o = -'" + 25",2 - 47fl3 + 25",4 - ",5, 
fP2,l = -9", + 90",2 - 156",3 + 90",4 - 9",5, 
CPl,2 = -9fl + 90",2 - 162fl3 + 90fl4 - 9flo, 
fPo.a = -'" + 25",2 - 47",3 + 25",4 - ",5, 
CP4,O = -30",2 + 261",3 - 456",4 + 261",5 - 30",6, 
CPa,1 = 3fl - 219fl2 + 1284fl3 - 2115fl4 + 1284fl5 - 219fl6 + 3fl7, 
CP2,2 = 9fl - 387fl2 + 2103fl3 - 3429fl4 + 2103",5 - 387fl6 + 9",7, 
fP1,3 = 3fl - 219fl2 + 1326fl3 - 2223fl4 + 1326fl5 - 219fl6 + 3",7, 
CPO.4 = -30fl2 + 261fl3 - 456fl4 + 261fl5 - 30fl6, 
fP5.0 = 15",2 - 570fl3 + 3072fl4 - 5004fl5 + 3072",6 - 570fl7 + 15fls, 
fP4.1 = 225fl2 - 4482fl3 + 19278fl4 - 29946fl5 + 19278fl6 - 4482fl7 + 225",s, 
fPa.2 = -3fl + 723",2 - 1l094fl3 + 44079fl4 - 67287fl5 + 44079",6 - 1l094fl7 + 723fl8 - 3fl9, 
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f!!2.3 = -3", + 723",2 - 11262",3 + 45333",4 - 69447",5 + 45333",6 - 11262",7 + 723",s - 3",9, 
f!!l.4 = 225",2 - 4608",3 + 20385",4 - 32022",5 + 20385",6 - 4608",7 + 225",s, 
TO.5 = 15",2 - 570",3 + 3072",4 - 5004",5 + 3072",6 - 570",7 + 15",s. 

Low-temperature polynomials for the /),,'r lattice: 

gl(U, v) = uav3, 
g2(U, v) = u6( -6!v6 + 3v5

) + 3U5
V
6, 

g3(U, v) = u9(68!v9 - 60vs + 9v7 + 2v6) + U
S

( - 54v9 + 24vS
) + u7(3v9 + 6vS

) + 2uSv9, 

1295 

g4(U, v) = Ul2( -878!Vl2 + 1128vll - 373tvlO - 21v9 + 12vs + 3v7) + ull (963vl2 - 825vll + 132vlo + 18v9) 
+ ulO(-175!vl2 - 60vll + 51vlo + 6v9) + u9(-39vl2 + 30vll + 12vlo + 2v9) + 12usvll + 3U7Vll , 

gs(u, v) = ul5(l2623tvl5 - 21300vl4 + l1106vl3 - 960Vl2 - 495vll 
- 30vlO + 21v9 + 6vS

) 

+ Ul4 ( -17616vl5 + 22230Vl4 - 7560Vl3 - 72Vl2 + 192vll + 30vlO) + Ul3(5667vl5 - 2070Vl4 

- 1254vl3 + 198vl2 + 84vll + 12vlO) + Ul2 (456vl5 - 1374vl4 + 96vl3 + 112vl2 + 24vll + 6vlO) 
+ ull ( -159vl5 - 222vl4 + 150vl3 + 36v12 + 18vll

) + ulO( -60Vl4 + 78vl3) + u9(l5vl3 + 6Vl2) 
+ 6uBvl3. 

APPENDIX B 

Listed below are the low-temperature polynomials g.(u, v) for the third equivalent neighbor model lattices. 

s.c.(1, 2,3) lattice: 

gl(U) = Ul3 , 
g2(U) = 13u25 - 13iu26 , 
g3(U) = 44U36 + 193ua7 - 544u38 + 307}U39 , 
giu) = 67u46 + 288u47 + 1263u48 + 1 1 89u49 - 16336!u50 + 22251u5l - 8721!u52 , 
gs(u) = 56u55 + 192u56 + 1251u57 + 3292u58 + 8112u59 + 15912u60 - 60003u6l - 356148u62 

+ 1037346u63 - 929860U64 + 27985otuB5
• 

fc.c.(l, 2, 3) lattice: 

gl(U) = u21, 
g2(U) = 21u4l - 21lu42, 

g3(U) = 124u60 + 489u6l - 1392u62 + 779!uS3, 
g4(U) = 333u78 + 1320u79 + 5709u80 + 3341uBl - 65926~U82 + 90459u83 - 35235!uB4. 

h.c.c.(1, 2,3) lattice: 

gl(U) = Ul3 , 
g2(U) = 13u25 - 13tu26 , 
g3(U) = 44u36 + 193u37 - 544u38 + 307tua9, 
g4(U) = 57u46 + 288u47 + 1353u48 + 1029u49 - 16246tu50 + 22251u5l - 8731!u52, 
gs(u) = 28u55 + 236u56 + 867u57 + 3844u58 + 8732u59 + 18000u60 - 71367uSl - 342124u62 

+ 1032114uB3 - 931080u64 + 280750tu65. 

A'r(l, 2, 3) lattice: 

gl(U) = u9, 
g2(U) = 9Ul7 - 9lul8 , 
g3(U) = 27u24 + 72U25 - 243u26 + 144!,u27 , 
g4(U) = 38u30 + 117ual + 375u32 - 175u33 - 4081 tu34 + 6402u35 - 2675!ua6. 
gs(u) = 27u35 + 111u36 + 324u37 + 963u38 + 925u39 + 828u40 - 18861u4l - 36806u42 + 168471u43 

- 171408u44 + 55426tu45. 

s.q.(1, 2, 3) lattice: 
gl(U) = u6

, 

g2(U) = 6ull - 6tu12, 
g3(U) = lOuI5 + 36uI6 - 114u17 + 68!,UI8 , 
g4(U) = 6UI8 + 30UI9 + ll1u20 + 22u2I - 1389u22 + 2100u23 - 880!u24, 
gs(u) = u20 + 8U2I + 53u22 + 134u23 + 303u24 + 328u25 - 3230U26 - 10688u27 

+ 39660U28 - 39262u29 + 12693tu30. 



                                                                                                                                    

1296 N. W. DALTON AND D. W. WOOD 

APPENDIX C denoted by N[G] (see Sec. II), and the numbers [G] 
The tables below contain the lattice constants of the are recorded in the tables. The lattice constants of 

low-temperature spin configurations on the second separated configurations [GlY are given in Tables XX 
and third equivalent neighbor model lattices. Tables and XXII, where two numbers are recorded for each 
XIX and XXI contain connected graphs only; the figure. The upper entry is equal to [GtV~l and the 
number of occurrences of a connected graph G is lower entry is the coefficient of N in [G]N. 

TABLE XIX. Low-temperature lattice constants of connected graphs containing up to 
five spins for the second equivalent neighbor model lattices. 

L.T. f.c.c.O, 2) s.c.(l, 2) b.c.c.O, 2) ,:1(1, 2) s.q.(1,2) 
Graph q = 18 q = 18 q = 14 q = 12 q=8 

C(2,1) 9 9 7 6 4 
C(3,1) 20 20 12 10 4 
C(3,2) 93 93 55 36 16 
C(4,1) 17 13 6 5 1 
C(4,2) 84 96 42 33 8 
C(4,3) 9 9 3 3 1 
C(4,4) 420 420 192 108 28 
C(4,5) 957 933 427 210 64 
C(4,6) 160 152 64 26 8 
C(5,1) 24 0 0 0 0 
C(5,2) 132 108 24 24 4 
C(5,3) 0 36 8 6 0 
C(5,4) 0 0 0 0 0 
C(5,5) 348 468 156 102 12 
C(5,6) 0 0 0 0 0 
C(5,7) 216 120 48 30 8 
C(5, 8) 15 33 6 9 1 
C(5,9) 24 44 12 12 0 
C(5,1O) 6 0 0 0 0 
C(5, 11) 324 276 96 48 4 
C(5, 12) 756 852 276 126 20 
C(5, 13) 1296 1368 480 252 48 
C(5, 14) 354 384 138 57 8 
C(5,15) 252 228 72 36 12 
C(5,16) 4332 4212 1488 648 116 
C(5,17) 2784 2856 984 372 56 
C(5, 18) 636 528 156 42 8 
C(5, 19) 4872 4320 1440 414 88 
C(5,20) 93 75 25 3 1 
C(5,21) 9657 9369 3307 1224 252 
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TABLE XX. Low-temperature lattice constants of separated graphs containing up to five spins for the 
second equivalent neighbor model lattices. 

L.T. f.c.c.(1, 2) s.c.(1,2) b.c.c.(l, 2) ~(1, 2) s.q.(1,2) 
Graph 9 = 18 9 = 18 9 = 14 9 = 12 9=8 

S(2, 1) -9 -9 -7 -6 -4 
-n -9! -7! -6i -4i 

S(3, 1) -255 -255 -153 -108 -48 
-264 -264 -160 -114 -52 

S(3,2) +142 +142 +86 +62 +28 
+15H +15H +93k +68l +32l 

S(4, 1) 
-696 -704 -324 -214 -56 
-716 -724 -336 -224 -60 

S(4,2) 
-1731 -1719 -797 -456 -135 
-177!! -1759! -82H -474 -143 

S(4,3) 
-3624 -3576 -1636 -864 -260 
-3717 -3669 -1691 -900 -276 

S(4,4) +7218 +7182 +3346 +1941 +584 
+7563 +7527 +3555 +2091 +652 

S(4,5) 
-2814 -2806 -1323 -792 -243 
-3005! -2997! -1440! - 878t -283! 

S(5, 1) 
-669 -523 -186 -117 -15 
-686 -536 -192 -122 -16 

S(5,2) 
-3564 -4056 -1374 -831 -136 
-3648 -4152 -1416 -864 -144 

S(5,3) 
-426 -396 -111 -78 -20 
-435 -405 -114 -81 -21 

S(5,4) 
-9240 -9264 -3300 -1758 -308 
-9420 -9444 -3384 -1818 -324 

S(5,5) 
-19020 -19068 -6672 -2988 -508 
-19440 -19488 -6864 -3096 -536 

S(S, 6) 
+21720 +22028 +7836 +4164 +728 
+22616 +22932 +8256 +4448 +804 

S(5,7) 
-8004 -7284 -2408 -762 -164 
-8164 -7436 -2472 -788 -172 

S(5,8) 
-47205 -45333 -16043 -6300 -1300 
-48162 -46266 -16470 -6510 -1364 

S(5,9) 
-47997 -47109 -16637 -7068 -1408 
-48834 -47946 -17022 -7284 -1472 

S(S, 10) 
+114564 +113202 +40632 +18849 +3769 
+118671 +117297 +42549 +19989 +4112 

S(5, 11) 
+120699 +117723 +41829 +17898 +3660 
+125253 +122229 +43905 +19014 +4000 

S(5,12) 
-210183 -207963 -75311 -35769 -7304 
-221400 -219144 -80588 -38916 -8276 

S(5,13) 
+63204 +62766 +23029 +11355 +2368 
+67528t + 67082t +25096t +12623t +277H 
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TABLE XXI. Low-temperature lattice constants of connected graphs containing up to five 
spins for the third equivalent neighbor model lattices. 

L.T. f.c.c.(l, 2, 3) s.c.(1, 2, 3) b.c.c.(l, 2, 3) Ll(I, 2, 3) s.q.(1, 2,3) 
Graph q = 42 q =26 q = 26 q = 18 q = 12 

C(2,1) 21 13 13 9 6 
C(3,1) 124 44 44 27 10 
C(3,2) 489 193 193 72 36 
C(4,1) 333 67 57 38 6 
C(4,2) 1320 288 288 117 30 
C(4,3) 105 51 21 3 3 
C(4,4) 5604 1212 1332 372 108 
C(4,5) 11385 2833 2833 606 216 
C(4,6) 1904 544 464 58 28 
C(5, 1) 48 72 12 4 
C(5,2) 636 516 42 28 
C(5,3) 192 108 18 0 
C(5,4) 24 0 0 0 
C(5,5) 1380 2028 495 82 
C(5,6) 132 0 0 0 
C(5,7) 1152 780 312 48 
C(5,8) 99 87 12 5 
C(5,9) 192 236 111 8 
C(5,1O) 56 28 27 1 
C(5,11) 1588 1708 450 52 
C(5,12) 3180 3660 450 116 
C(5,13) 6552 6096 1368 252 
C(5,14) 1392 1788 336 52 
C(5, 15) 2292 636 60 44 
C(5,16) 18132 19500 3282 664 
C(5,17) 10008 12984 1623 350 
C(5, 18) 3060 2712 186 58 
C(5, 19) 22440 20136 1458 488 
C(5,20) 707 343 3 5 
C(5,21) 40957 41173 4953 1258 
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TABLE XXII. Low-temperature lattice constants of separated graphs containing up to five spins for the 
third equivalent neighbor model lattices. 

L.T. f.c.c.(1, 2, 3) s.c.(I, 2, 3) b.c.c.(I, 2, 3) ~(l, 2,3) s.q.(I, 2, 3) 
Graph q = 42 q = 26 q = 26 q = 18 q = 12 

S(2, 1) 
-21 -13 -13 -9 -6 
-2}! -13! -13! -9! -6! 

S(3, 1) 
-1371 -531 -531 -234 -108 
-1392 -544 -544 -243 -114 

S(3,2) 
+758 +294 +294 +135 +62 
+779! +307! +307! +144! +68! 

S(4,1) 
-9824 -2144 -2224 -812 -212 
"":9948 -2188 -2268 -839 -222 

S(4,2) 
-21489 -5171 -5201 -1449 -459 
-21709! -5255! -5285! -1489! -477 

S(4,3) 
-43728 -10888 -10768 -2520 -876 
-44217 -11081 -10961 -2592 -912 

S(4,4) 
+88626 +21538 +21538 +6078 +1950 
+90459 +22251 +22251 +6402 +2100 

S(4,5) 
-34236 -8330 -8340 -2491 -794 
-352351 -87211 -873lf -26751 -880! 

S(5,1) 
-3605 -3271 -1233 -139 
-3672 -3328 -1271 -145 

S(5,2) 
-17340 -17616 -4218 -762 
-17628 -17904 -4335 -792 

S(5,3) 
-3516 -1302 -123 -86 
-3567 -1323 -126 -89 

S(5,4) 
-41008 -42564 -9858 -1756 
-41580 -43136 -10101 -1816 

S(5,5) 
-77748 -87228 -14676 -2968 
-78960 -88560 -15048 -3076 

S(5,6) 
+94512 +100020 +22548 +4114 
+97272 +102860 +23630 +4396 

S(5,7) 
-38924 -32836 -2562 -868 
-39468 -33300 -2620 -896 

S(5,8) 
-202145 -199985 -26322 -6568 
-204978 -202818 -26928 -6784 

S(5,9) 
-206465 -206357 -30240 -7188 
-208974 -208866 -30888 -7404 

S(5,1O) +490986 +493548 +85830 +19047 
+503229 +505821 +89466 +20190 

S(5, 11) +520527 +512823 + 75765 +18342 
+534117 +526293 +79005 +19470 

S(5, 12) 
-896715 -897935 -161604 -36106 
-929860 -931080 -171408 -39262 

S(5, 13) +267222 +268112 +51495 +11423 
+279850k +280750k +55426k +12693t 
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The connected and separated graphs which are listed in the tables are tabulated below. Each graph is 
denoted by either C(x, y) (connected) or Sex, y) (separated), where x is the number of vertices of the 
graph and y serves to identify distinct topological types. 

I 
C(2,1) 

C(3,1) C(3,2) 

~,rzr,O,N,N,>-
C(4.1) C(4.2) C(4,3 ) C(4,4) C(4.5) C(4,6) 

C(5.1l C(5.2) C(5.3) C(5,4) C(5,5) C(5.6) C(5.;r) C(5,8) C(5.9) 

C(5.10) C(5.11) C(5.12 ) C(5 .13) 

tL,/L,X,M 
C(5.1B) C(5,19) C(5,20) C(5.21) 

• • 
5(2.1 ) 

I. • •• 
5(3.1 ) 5(3,2) 

b. • • II A. I I .. • 
5(4.1) 5(4,2) 5(4.3) 5(4.4) 

~. • 0 .. 0 .. ~\ • 
5(5.1) 5(5.2) 5(5.3) 5(5,4) 

N 
• 1 

A\ II. 
I A 

5(5.8) 5(5.9) 5(5.10) 5(5,11) 

APPENDIX D 

The high-temperature (T> Tc) expansions of the 
zero-field susceptibility and zero-field partition func­
tion in Eqs. (47) and (48) are most easily derived by 
using the Van der Waerden identity (for details see 
Domb2), by means of which the series are expressed 
in ascending powers of VI {= tanh (2J1/kT)} and 
v2 {= tanh (2J2 fkT)}. The expansion can be put in 

C(5.14) C(5.15) C(5,16 ) C(5 .11 ) 

• • • • 
5(4.5) 

N .. b. • • I >-. 
5(5,5) 5(5,6) SC5,1) 

• • 1 I. • • 
1 • • • 

• • 
5(5,12 ) 5(5,13) 

the form 

kT 1 2 ~ b r s 
-2 Xo = + "'" r,sV1V2 , 
m r+s=1 

and 

log Z = log 2 + iql log {cosh (2J1/kT)} 
00 

+ iq2log {cosh (2J 2/kT)} + ! Pr,svIvL 
r+s=3 
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where br •s and p,.S can be expressed in terms of ql and 
q2 and the lattice constants of multiply connected 
diagrams containing n.n. and n.n.n. bonds. These 
expansions are valid for any regular lattice structure. 

The only new configurations introduced here are the 
two diagrams 

o Listed below are the coefficients br •s and Pr .• up to 
orders six and seven, respectively. The coefficients 
bs .r and p s•r can be obtained from br .s and Pr •• by 
interchanging ql and q2, and n.n. bonds C(2, 1) with 
n.n.n. bonds CI (2, 1). The notation scheme used below 
to identify the different configurations contributing to 
the expansion coefficients is fully explained by Dalton.15 which contribute to Pr •s , r + s = 7. 

r + s = 1: 

bl •O = !ql' 

r + s = 2: 

b2.0 = !ql(ql - 1), 
bl.1 = qlq2' 

r + s = 3: 

The High-Temperature Zero-Field Susceptibility Coefficients br•s 

ba,o = !ql(ql - 1)2 - 3[TIl, 
b2,l = !qIq2(3ql - 2) - 3[T2l. 

r + s = 4: 

b4,o = !ql(ql - 1)3 - 4[Sll - 6(ql - 1)[TIl, 
b3,I = qlql2qi - 3ql + 1) - 4[S2l - 6q2[Tll - (6ql - 4)[T2l, 
b2,2 = !qIq2(6qlq2 - 3ql - 3q2 + 2) - 4~2[Sd - (6q2 - 2)[T2l - (6ql - 2)[T3l. 

r + s = 5: 

b5.0 = !ql(ql - 1)4 - 5[Pll + 4[Fd - (8ql - 8)[Sll - (9qi - 18ql + 6)[TI1, 
b4,1 = !qlq2(5q~ - 12qi + 9ql - 2) - 5[P2l + 4~1[Fd - 8q2[Sll - (8ql - 6)[S2l 

- (18qlq2 - t2q2)[Tl l - (9qi - 14ql + 4)[T2l, 
b3,2 = !(lOq~q~ - 12qiq~ - 4q~q2 + 3qlq~ + 6qiq2 - 2qlq2) - 5~2[Pd + 4~2[Fd 

- (8q2 - 2)[S2l - (8ql - 4)~2[Sd - (9q; - 6q2)[Tl l 
- (18qlq2 - 4ql - 8q2)[T2l - (9qi - 10qI + 2)[T31. 

r + s = 6: 

b6,o = !ql(ql - 1)5 - 6[Hll + 4[Cd + 4[Bll + 4[All - (10ql - 10)[P1l + (8ql + 6)[Fll 
- (12qi - 24ql + 8)[Sd - (12q~ - 36qi + 30ql - 9)[Tll, 

b5,l = (3qiq2 - qlq2)(ql - 1)3 - 6[H2l + 4~1[Cd + 4~1[Bll + 4~1[Cd - 10q2[Pl l 
- (10ql - 8)[P2] + 8q2[F1] + 8ql[F2] + (8ql + 6)[F3] - (24qlq2 - 16q2)[SI1 
- (12qi - 20ql + 6)[S2] - (36q2qi - 54qlq2 + 12q2)[T1 ] - (ql - 1)(12qi - 18ql + 4)[T2], 

b4•2 = !qlq2(ql - 1)(15qiq2 - 15qlq2 - 5qi + tql + 3q2 - 2) - 6~2[Hl] + 4~2[Cl] 
+ 4~2[Bl] + 4~2[Ad - (10q2 - 2)[P2] - (10ql - 6)~2[PI1 + (8q2 + 6)[F2] 
+ 8q2[F3] + 8ql[F4] + (8ql + 6)(~2[Fl] - [F4D - (12q~ - 8q2)[Sd 
- (24qlq2 - 12q2 - 4ql)[S2] - (12qi - 16ql + 4)~2[Sd - (36qlq~ - 18qlq2 - 18q~ + 12q2)[T1] 

- (36qiq2 - 42qlq2 - 6qi + 4ql + 8q2 - 3)[T21 - (l2qi - 24qi + 14ql - 2)[T31, 
b3.3 = qlq2(10qiq~ - 10qiq2 - lOqlq~ + 8qIq2 + 2qi + 4qlq2 + 2q~ - 3ql - 3q2 + 1) 

- 6~3[Hd + 4~3[CI) + 4~3[Bl] + 4~3[Al] - (lOq2 - 4)~2[Pl] 
- (10ql - 4)~3[Pd + (8q2 + 6)[F4] + (8ql + 6)[F~] + 8q2(~2[Fl] - [F4]) 
+ 8ql(~3[Fl] - [Fm - (12q; - 12q2 + 2)[S2] - (12qi - 12ql + 2)[S~] 
- (24qlq2 - 8ql - 8q2)~2[Sl] - (12q~ - 18q~ + 6q2)[T1 ] - (12qi - 18qi + 6ql)[T4] 
- (36qlq~ - 12q~ - 30qlq2 + 8q2 + 4ql)[T21 - (36qiq2 - 12qi - 30qlq2 + 8ql + 4q2)[T3]. 
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The High-Temperature Zero-Field Partition 
Function Coefficients P r . 8 

r + s = 3: 

Pa,o = [TI ], 

P2,l = [T2]' 

r + s = 4: 

P4,o = [SI], 

P3,I = [S2], 

P2,2 = [Sa] + [S4]' 
r + s = 5: 

P5 ,o = [PI]' 

P"I = [P2], 

Pa,2 = [Pal + [P4]· 
r + s = 6: 

P6,o = [Hd - [FI] - UTd, 

JOURNAL OF MATHEMATICAL PHYSICS 

Po,l = ~I[Hd - [F3], 

P4,2 = ~2[Hd- [F5] - [F6] - [F7] - [F2] - UT2], 

P3,3 = ~3[HI] - [F4] - [F~]. 

r + s = 7: 

P7,o = [Gd - 2[KIJ - [BIJ - 2[FI], 

P6,I = ~I[GIJ - 2~I[KI] - [Ba] 

- [B4] - [B5] - 2[F2J - [F3], 

Po,2 = ~2[GI] - 2~2[Kd - [B2] - [Bs] 

- [BlOJ - [BI2] - [B13] - [B14] 

- [Fa] - [F4] - [F7], 

P4,a = ~3[Gt1 - 2~3[KI] - [B6] - [B7J 

- [Bs] - [B2d - [B22] - [B23] 

- [B24] - [B25 ] - [B26] - [F4 ] 

- 2[F5] - 2[F6] - [F;]. 
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It is proved within the framework of nonrelativistic quantum mechanics that identical particles are 
either boson or fermions. The starting assumptions are: (a) if Ip(XI ••• xn) is in the space Je of allowed 
states, then so is Pip for every permutation P; (b) [P'P[" = ['P[" for all Ip E Je, all allowed configurations 
(Xl' •. xn), and all Ip E Je; (c) Je is a vector space (principle of superposition); (d) every Ip E Je is con­
tinuous along every path in the n-particle configuration space C; and (e) there is at least one physical 
observable connecting each pair of irreducible components of C. 

The available observational evidence is all con­
sistent with the postulate, called the symmetrization 
postulate by Messiah,1.2 that allowed states of a system 
of identical particles are either all symmetric or all 
antisymmetric under permutations. Correct proofs of 
the symmetrization postulate involve not only general 
properties of physical observables and states of 
identical particles, but also topological considerations 
related to the connectivity properties of the configura­
tion space.3•4 These enter because symmetri'es more 
complicated than Bose and Fermi are incompatible 
with the continuity of allowed wavefunctions along 

1 A. Messiah, Quantum Mechanics (North-Holland Pub!. Co., 
Amsterdam, 1962), Vol. II, p. 595. 

2 A. M. L. Messiah and O. Greenberg, Phys. Rev. 136, B248 
(1964). 

3 M. D. Girardeau, Phys. Rev. 139, B500 (1965). 
• M. Flicker and H. S. Left', Phys. Rev. 163, 1353 (1967). 

every path in configuration space; a path is connected 
by definition. 

Previous proofs were restricted either to systems 
with spatially-connected configuration spaces3 or to 
particles without spin or other internal degrees of 
freedom. 4 The proof sketched here lifts both of these 
restrictions. 

Consider a system of n identical particles with 
allowed wavefunctions lJ!(xl ••• xn), where Xj stands 
for the position rj and any internal variables (in­
cluding spin) of the jth particle. It will be necessary 
to make use of several lemmas relating to the geometry 
of configuration space. The extended one-particle 
configuration space Se is defined as the set of all x 
(x stands for a typical Xj)' The forbidden one-particle 
configuration space So is the set of all points of Se at 
which all allowed lJ! vanish (i.e., lJ! vanishes when any 
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x j E So) as a result of constraints or boundary con­
ditions. The one-particle configuration space S == 
Se - So. The distance between two points in S is 

[

V J1 Ix - x'i == (r - r')2 + j~lh - 7"~)2 (1) 

where 7"1 ... 7"v (assumed defined so as to be real) are 
all internal variables (assumed discrete) included in 
the one-particle configuration x. The extended con­
figuration space Ce is the set of all ordered n-tuples 
X = (Xl' .. xJ for which every Xj E S. Theforbidden 
configuration space Co is the set of all points of Ce at 
which every allowed '!J'(X) vanishes. Co need not be 
null because of the possibility of two-particle con­
straints (e.g., hard cores). The configuration space 
C == Ce - Co. The distance between two points in Cis 

IX - X'I == [j~l(IXj - X;!)2J. (2) 

Lemma 1: Ce , Co, and C are all closed under 
permutations. 

Here permutations P are regarded as linear opera­
tors in Ce , defined by X --+ PX where PX differs from 
X by a permutation of Xl ... X n • The lemma is a 
trivial consequence of the previous definitions, 
provided that '!J'(PX) E Je if and only if '!J'(X) E Je; 
this we assume as part of the definition of identical 
particles. Here Je is the space of allowed states of the 
system. 

Lemma 2: If C is not connected, then its connected 
subspaces C", are permuted bodily under the action 
of the transformations X --+ PX. C", which are images 
of each other under permutations are congruent in 
the usual geometrical sense. 

This is a consequence of the fact that the permuta­
tions are orthogonal operators on C, i.e., 

IPX - PX'I = IX - Xl 
Divide the set of all C", into classes x,j, such that 

all C", in a given class are congruent but the C", in 
different classes are not. If all the C", in x,j are images 
of each other under permutations, then the subspace 
of C composed of the union of all C", E x,j is said to 
be irreducible; otherwise it is reducible. Every reducible 
subspace can be decomposed into irreducible ones. 

Lemma 3: C can be decomposed into irreducible 
subspaces each of which is either connected or is the 
union of congruent subs paces each of which is 
connected. 

Lemma 4: Assume the following: (a) if '!J'(xl ... xn) 
is in the space Je of allowed states, then so is P'!J' for 
every permutation P, (b) IP'!J'12 = 1'!J'12 for all P, all 
allowed configurations (Xl'" x n ), and all '!J' E Je, 
(c) Je is a vector space (principle of superposition), 
(d) every '!J' E Je is continuous along every path in the 
n-particle configuration space C, and suppose that C 
is irreducible. Then either all '!J' E Je are completely 
symmetric, or else all are completely antisymmetric. 

We note first that the same conclusion has already 
been established4 for the special case of connected C. 
This restriction is severe; in particular, it rules out 
particles with spin or other internal degrees offreedom, 
as a consequence of (1) and (2). However, the same 
method of proof shows3•4 that in the general case 

P'!J'(X) = C p (X)'!J' (X) , (3) 
where 

CQp(X) = CQ(X)Cp(X), QCp(X) = Cp(X). (4) 

Since C is irreducible, it consists of congruent con­
nected subspaces C", which are all images of each other 
under appropriate permutations. It follows from the 
first Eq. (4) that the C p(X) form a scalar representa­
tion of the permutation group at each fixed X, so 
that C p(X) = ± I at each X. By the definition of C 
(Co excluded from C), at each X E C there is a 
'!J' E Je such that '!J'(X) =;f O. If C p(X) jumped from 
+ 1 to -1 at the point X E C"" the wavefunction 
P'!J' E Je would be discontinuous at X, contradicting 
hypothesis (d). Hence Cp(X) is constant in each C",: 

Cp(X) = Cp,,,,, XE C"" (5) 

By irreducibility of C, for any X E C'" and any (J 
there is a permutation Q such that QX E C{J' It then 
follows from (5) and the second Eq. (4) that CP'" 
is, in fact, independent of IX, i.e., ' 

P'!J'(X) = C p'!J'(X) (6) 

for all X E C. Since the C p form a scalar representa­
tion of the permutation group, the conclusion of 
Lemma 4 follows. 

Lemma 5: Assume hypotheses (a), (b), (c), and (d). 
Denote the irreducible subspaces of C by Cv. Then 

P'!J'(X) = Cp'!J'(X) , X E e, (7) 

where, for each fixed v, C], is either the Bose repre­
sentation Cp = I (all P) or the Fermi representation 
Cp = (-1)p(P). 

This follows from Lemmas 3 and 4. 
To complete the proof of the symmetrization 

postulate it is necessary to dispose of the possibility 
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that the Bose representation might hold in some Cv 
and the Fermi representation in others. This can be 
done by making use of properties of physical observ­
abies. We note first that every physical observable a 
commutes with every permutation of identical parti­
cles: 

[0, P] = o. (8) 

This is not an additional assumption; it follows 5 

from the assumptions6 that 01p E Je if 1p E Je and that 
IP1p12 = 11p12. 

Theorem (Symmetrization); Assume hypotheses (a)­
(d), and (e) there is at least one physical observable 
connecting each pair of irreducible components of C 
in the sense that, for every pair of irreducible sub­
spaces CIl, Cv, one assumes the existence of at least 
one physical observable OIlV which connects CIl and 
Cv in the sense that 

OIlV1pV(X) =;6 0 for some 1pv E Je and some X E CIl, 

where 1pV(X) = 0 for all X ~ Cv. (9) 

Then either all 1p E Je are completely symmetric, or 
else all are completely anti symmetric. 

Note first that 

POIlV1pV(X) = OIlV[p1pV(X)] = OIlV[C~1pV(X)] 

= Q,OIlV1pV(X), all X E C, (10) 

where the first equality follows from (8) and the 
second equality follows from Lemma 5 if X E cv, 
and otherwise follows trivially from the vanishing of 
1pV(X) [hence, P1pV(X)] if X 1= Cv (recall that IP1pvI 2 = 
l1pvI2). Applying Lemma 5 again with 1p = OIlV1pV and 
X E CIl, one has 

Thus, 

(C,? - C;,)OIlV1pV(X) = 0, X E CIl. (12) 

Then, by (9), Cf, = Cj, for all.u and v, i.e., C'P = Cp , 

5 It was shown in the course of a previous proof (see Ref. 3) that 
[P1p,(X)]* P1p.(X) = lp:(X)lp.(X) as a consequence of 1P1p(X)12 = 
11p(X)1 2 for al/lp E Je and the linearity of Je. Take 11', = p--llp~ .11'2 = 
01pp where {1p~} is any complete orthonormal set. Then straight­
forward algebra yields (1p~, POlpp) = (1p~. OP1pp), from which (8) 
follows. 

6 Strictly speaking, one should only require that 011' be defined 
on a dense subset of Je. This complicates the analysis but does not 
change the conclusion (8). 

independent of .u. The theorem then follows by the 
usual argument (the C p form a scalar representation 
of the permutation group). 

In order to make the theorem relevant to the real 
world it is necessary to show that physical observables 
OIIV satisfying (9) can be found. Note first that such 
an OIIV can be represented as an integraF operator 

OIlV1p(X) = J KIlV(X, X')1p(X') dX' (13) 

with a kernel Kf1V which is non vanishing when X is in 
some subspace of Cf1 and X' in some subspace of Cv. 
The requirement (8) is satisfied by OIIV if 

Kf1V(P X, P X') = KIlV(X, X'). (14) 

As an example, consider a system of n electrons in a 
box. Then each irreducible component of C consists 
of all configurations with the same value of the z 
component of total spin angular momentum; there 
are 2S + 1 such cv, where S = in. The KIlV can then 
be chosen so that each OIlV is an appropriate power of 
S+ or S_ where S± = Sx ± iSy and Sx, Sy, Sz are the 
components of the total spin angular momentum. 
Eq. (9) is then satisfied for these OIlV. It might be 
objected that if n,....,., 1023 , some of the required OIlV 
are very high powers of S+ or S_, which one might 
object to regarding as physically observable. How­
ever, the proof of the symmetrization theorem could 
be refined in this case by proving equality of C'P and 
Cp only for "adjacent" subspaces Cf1 and CV; equality 
for all such special choices implies equality for all .u 
and v. 

It is not possible to give a mathematical proof of 
the existence of physical observables OIlV satisfying 
(9) for the case of a completely general system of 
identical particles. However, such a proof should not 
be sought; the existence of such OIlV should really be 
regarded as part of the definition of identical particles. 
If two subspaces of C could nGt be connected by any 
conceivable physical process, then the particles 
associated with those subspaces would behave as 
operationally distinct species. 
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